- 博客(0)
- 资源 (13)
- 收藏
- 关注
视频监控中的前景目标检测算法研究_曾冬冬.caj
前景目标检测属于监控系统的前端处理部分,是后续各种高级处理任务(如目标跟踪、目标识别、视频编码、视频分析等) 的基础。在过去的几十年中,前景目标检测技术受到了国内外学者的广泛研究,大量算法的提出使得前景目标检测技术取得了可观的进步,并由实验走向了具体应用。但是由于实际场景中包含各种各样的复杂因素,如光照变化、动态背景、相机抖动、阴影以及伪装等干扰,设计一个实时性好,鲁棒性强的前景目标检测算法仍然具有重大研究意义。
2020-01-01
基于深度学习的监控视频中的异常事件检测和对象识别_鲍天龙.caj
本文针对异常事件检测、不同分辨率人脸识别和行人重识别等问题开展研究工作,主要有:(1)监控视频中的异常事件检测,比如打斗、追逐或人群聚集等事件;(2)监控视频中异常或者可疑行人的身份识别。
2019-11-15
基于深度学习的视频异常检测.caj
异常检测作为智能视频监控的研究难点和关键技术,其关键问题就是如何获得更好的特征表示,而深度学习相较于传统方法的优势在于可以自动地从海量数据中学习出有用的特征数据,为异常检测问题提供了一个很好的解决方法。
2019-07-08
基于双流卷积神经网络的监控视频中打斗行为识别研究.caj
智能监控系统的主要特点是在可以自动对监控视频中的图像序列进行处理,具体处理包括定位目标、跟踪目标或者识别目标行为。应用计算机视觉相关技术来进行异常行为识别是目前非常热门的研究方向,研究过程包括了图像处理、视频分析、机器学习等领域的相关技术。对运动目标的跟踪、建模以及根据其所处环境对行为进行判断和分类,以及让计算机理解人体各种行为,这些任务都有较大的难度,因此,研究异常行为识别算法有很高理论及实际意义。
2019-07-08
拥挤行人异常行为智能检测仿真
道路人群拥挤行人异常行为智能检测方法的研究影响行人异常行为模式的变化,在图像、视频和生活领域具有较好的
发展前景。针对当前方法存在识别率不均衡的问题,提出了一种基于投影近似子空间估计的异常行为检测方法。对异常行
为样本的置信度进行取值,计算人群拥挤行人异常行为的距离函数,利用异常行为抽样来衡量行人异常行为样本的多样性,
并对样本间的余弦角距离进行计算,分析异常行为样本的多样性和不确定性,在对道路人群拥挤行人异常行为抽样的基础
上,利用抽样得到的数据对行人异常行为进行数据最小化重构,参考和估计行人异常行为投影近似子空间,通过计算得到第
一个异常行为投影近似基,继续进行下一个异常行为投影近似基的求解,对行为向量的异常程度进行判断。仿真结果表明,
提出方法具有较好的识别率,提高了行人异常行为检测的可行性,为后续实现道路人群拥挤行人异常行为的检测奠定了良
好基础
2019-04-06
基于深度时空卷积神经网络的人群异常行为检测和定位
针对公共场合人群异常行为检测准确率不高和训练样本缺乏的问题,提出一种基于深度时空卷积神经网络 的人群异常行为检测和定位的方法。首先针对监控视频中人群行为的特点,综合利用静态图像的空间特征和前后帧 的时间特征,将二维卷积扩展到三维空间,设计面向人群异常行为检测和定位的深度时空卷积神经网络;为了定位 人群异常行为,将视频分成若干子区域,获取视频的子区域时空数据样本,然后将数据样本输入设计的深度时空卷 积神经网络进行训练和分类,实现人群异常行为的检测与定位。同时,为了解决深度时空卷积神经网络训练时样本 数量不足的问题,设计一种迁移学习的方法,利用样本数量多的数据集预训练网络,然后在待测试的数据集中进行 微调和优化网络模型。
2019-04-06
基于深度学习的面部表情识别研究
深度学习在语音识别、图像理解等许多应用领域取得了突破性成果。针对基于深度学习的静态 人脸图像表情识别方法进行研究,首先介绍了深度学习的原理,并归纳了目前公开且常用的面部表情数据集;然后 介绍了基于深度学习的表情识别的三个步骤,归纳了图像预处理和表情分类的主要方法,重点总结了目前性能较好 用来提取特征的深度学习框架以及这些方法的基本原理和优劣势比较;最后指出了目前面部表情识别存在的问题和 未来可能的发展趋势。
2019-04-06
带有遗传算子的烟花爆炸优化算法
: 受烟花爆炸现象的启发并结合遗传算法思想提出一种新的优化算法———带有遗传算子的烟花爆炸优化算法( GAFEO)。该算法主要模 拟烟花爆炸的方式对解空间进行基本的并行弥漫式爆炸搜索,引入自适应局部搜索策略和遗传算法中的交叉变异策略以改善算法的优化性能。 通过实验对 12 个常用高维测试函数进行优化计算,结果表明,与 PSO 算法以及其他新型算法相比, GAFEO 算法在寻优能力、寻优精度等方面 都具有较好的性能。
2019-02-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人