自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 图像crop之后要进行清晰度检测

截图之后图像有可能会变得不清晰,最好进行清晰度检测,偷懒做法可以增强一下图片。

2024-02-20 16:04:19 395 1

原创 oponcv笔记(一)

把检测到的边缘,检测有没有直线除了有cv2.HoughLinesP(线段),还有cv2.HoughLines(直线),感觉不能用在工业上检测直线,因为很难检测得齐全。是 OpenCV 中用于计算轮廓的弧长(周长)的函数。该函数接受轮廓(表示为 Numpy 数组)作为输入,并返回轮廓的弧长(长度)。举个例子,kernel为(2,1),对下面8x8的图像进行腐蚀,其他的也是类似运算。把检测图片的边缘提取出它的轮廓(闭合的、没有缺口的形状)开运算(先腐蚀,后膨胀),闭运算(先膨胀,后腐蚀)

2023-12-22 23:50:31 420

原创 小目标检测方案

1、修改yaml文件,4个输出头,第一个C3也输出,增加更小的anchor,新增加160X160的检测特征图,用于检测4X4以上的目标。2、增加样本量(拍摄,GAN)、数据增强(copy、裁剪、mosaic、翻转)这些就不说了。3、将CBAM集成到YOLOv5(csdn说工业上最好不要用)5、同一张图上有比较多的小目标物体的话效果比较好(copy)2、Neck部分改进,增加底层的特征融合,多尺度融合。4、对图像进行Tiling(不懂)1、采用高分辨率的图像(有用)5、用NWD代替IOU(不懂)

2023-12-16 21:34:53 442

原创 目标检测标注方案

7、视觉上易混淆的物体但非要给它们分类的,要明确它们的特征,扩充对照样本,比如说破洞和有些生锈都是黑黑的,很难分辨,要单独把它们拿出来标注,最好多人一起标注,形成对照。8、有些类别的缺陷样本就很多,比如说生锈样本很多,就不要全标注了,标注得差不多就行,要是效果不行再增加,不要浪费标注资源。4、对于细长的缺陷,尽可能拉长一下长宽比,因为anchor就是差不多比例是1,模型用的是3x3卷积核,太细长学不了。9、样本不均,有些样本很少,比如说破洞很少,这时候就要单独做样本扩增,样本重复上传,仿真拍照等。

2023-12-16 17:04:20 465

原创 opencv边缘检测

上面的博客讲得很清楚,下面来一个简短的笔记。

2023-12-15 22:27:07 397

原创 SSD先验框的理解

意思就是best_truth_idx本来呢就是为每一个prior匹配好最佳的truth,但是呢如果当前prior是某一个truth的最大值的话,那就需要变成这个最大值的truth的prior。这里为什么等于j,比如说truth的序号是[0,1],对应最大的prior[2,0],我找出了prior 2的框告诉它你的truth是0,prior 0的框你对应的truth是序号1.那这样的话的best_truth_idx里面放着对应的truth。# 1的意思就是列进行压缩,只剩行,结果为。

2023-12-05 18:25:19 401

rendervideo.py

rendervideo.py

2023-03-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除