最大字段和(暴力,分治,在线算法)

求一个序列的最大字段和即求一个序列的最大连续字段和,例如[4, -3, 5, -2, -1, 2, 6, -2]的最大子段和为11=[4+(-3)+5+(-2)+(-1)+(2)+(6)]。

1.暴力算法
时间复杂度O(n^3)
求出每一个子段的和然后取最大值

#include<bits/stdc++.h>
using namespace std;

int MaxSubsequenceSum(int a[])
{
    int i,j,k;
    int ans;
    int maxsum = 0;
    for(i=0; i<8; i++)  //子段起始位置
    {
        for(j=0; j<8; j++) //子段结束为止
        {
            ans = 0;
            for(k=i; k<j; k++)
            {
                ans +=a[k];
            }
            if(ans>maxsum)
            {
                maxsum = ans;
            }
        }
    }
    return maxsum;
}


int main()
{
    int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 };
    int maxSubSum = MaxSubsequenceSum(a);
    cout << "The max subsequence sum of a is: " << maxSubSum << endl;
    return 0;
}

2;优化后的暴力
时间复杂度(n^2)

#include<bits/stdc++.h>
using namespace std;

int MaxSubsequenceSum(int a[])
{
    int i,j,k;
    int ans;
    int maxsum = 0;
    for(i=0; i<8; i++)  //子段起始位置
    {
        ans = 0;
        for(j=i; j<8; j++) //子段结束为止
        {
            ans +=a[j];   //累加元素值
            if(ans>maxsum)  //更新最大值
            {
                maxsum = ans;
            }
        }
    }
    return maxsum;
}


int main()
{
    int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 };
    int maxSubSum = MaxSubsequenceSum(a);
    cout << "The max subsequence sum of a is: " << maxSubSum << endl;
    return 0;
}

3:分治法
时间复杂度O(NlogN)
将序列分成两部分,则最大字段和可能出现在三处
1:左半部分
2:右半部分
3:横跨左右两部分,这样的情况因为有一个边界是确定的,所以只需要从中间位置向左和向右分别扫一遍,然后相加就可以
初始状态
在这里插入图片描述
二分递归,递归截止条件lift=right
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
分别求出每一段的最大字段和
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
右半部分也是同样的操作
在这里插入图片描述
最后取最大值
在这里插入图片描述
时间复杂度分析
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;

int MaxSubsequenceSum(int a[],int left,int right)
{
    int MaxLeftSum,MaxRightSum;
    int MaxLeftBorderSum,MaxRightBorderSum;
    if(left==right)  //递归结束条件
        return a[left];
    int mid = (left+right)>>1;
    MaxLeftSum = MaxSubsequenceSum(a,left,mid); //左半部分
    MaxRightSum = MaxSubsequenceSum(a,mid+1,right); //右半部分
    MaxLeftBorderSum=0;
    MaxRightBorderSum=0;
    int tmpsum = 0;
    for(int i=mid; i>=left; i--)   // 左边包含边界最大序列和
    {
        tmpsum +=a[i];
        if(tmpsum>MaxLeftBorderSum)
            MaxLeftBorderSum = tmpsum;
    }
    tmpsum = 0;
    for(int i=mid+1; i<=right; i++)    // 右边包含边界最大序列和
    {
        tmpsum +=a[i];
        if(tmpsum>MaxRightBorderSum)
            MaxRightBorderSum = tmpsum;
    }
    int MaxBorderSum = MaxLeftBorderSum+MaxRightBorderSum;// // 最大边界子序列和等于两部分边界之和
    return max(MaxBorderSum,max(MaxLeftSum,MaxRightSum));//返回一个最大值
}

int main()
{
    int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 };
    int maxSubSum = MaxSubsequenceSum(a,0,7);
    cout << "The max subsequence sum of a is: " << maxSubSum << endl;
    return 0;
}

4:在线算法
时间复杂度O(N)

#include<bits/stdc++.h>
using namespace std;

int MaxSubsequenceSum(int a[],int left,int right)
{
    int MaxLeftSum,MaxRightSum;
    int MaxLeftBorderSum,MaxRightBorderSum;
    if(left==right)  //递归结束条件
        return a[left];
    int mid = (left+right)>>1;
    MaxLeftSum = MaxSubsequenceSum(a,left,mid); //左半部分
    MaxRightSum = MaxSubsequenceSum(a,mid+1,right); //右半部分
    MaxLeftBorderSum=0;
    MaxRightBorderSum=0;
    int tmpsum = 0;
    for(int i=mid; i>=left; i--)   // 左边包含边界最大序列和
    {
        tmpsum +=a[i];
        if(tmpsum>MaxLeftBorderSum)
            MaxLeftBorderSum = tmpsum;
    }
    tmpsum = 0;
    for(int i=mid+1; i<=right; i++)    // 右边包含边界最大序列和
    {
        tmpsum +=a[i];
        if(tmpsum>MaxRightSum)
            MaxRightBorderSum = tmpsum;
    }
    int MaxBorderSum = MaxLeftBorderSum+MaxRightBorderSum;// // 最大边界子序列和等于两部分边界之和
    return max(MaxBorderSum,max(MaxLeftSum,MaxRightSum));//返回一个最大值
}

int main()
{
    int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 };
    int maxSubSum = MaxSubsequenceSum(a,0,7);
    cout << "The max subsequence sum of a is: " << maxSubSum << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值