【回顾&引言】第一部分的内容大家可以感觉到我们主要是对基础知识做一个梳理,让大家了解数据分析的一些操作,主要做了数据的各个角度的观察。那么在这里,我们主要是做数据分析的流程性学习,主要是包括了数据清洗以及数据的特征处理,数据重构以及数据可视化。这些内容是为数据分析最后的建模和模型评价做一个铺垫。
开始之前,导入numpy、pandas包和数据
#加载所需的库
import numpy as np
import pandas as pd
#加载数据train.csv
df = pd.read_csv('train.csv')
df
第二部分:数据清洗及特征处理
我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章我们将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的样子。
2.1 缺失值观察与处理
我们拿到的数据经常会有很多缺失值,比如我们可以看到Cabin列存在NaN,那其他列还有没有缺失值,这些缺失值要怎么处理呢?
2.1.1 任务一:缺失值观察
(1) 请查看每个特征缺失值个数
(2) 请查看Age, Cabin, Embarked列的数据 以上方式都有多种方式,所以建议大家学习的时候多多益善
#方法一:查看各项不空的数和类型
df.info()
#方法二:各项空值的和
df.isnull().sum()
df[['Age','Cabin','Embarked']].head(3)#查看Age, Cabin, Embarked列的数据
2.1.2 任务二:对缺失值进行处理
(1)处理缺失值一般有几种思路
(2) 请尝试对Age列的数据的缺失值进行处理
(3) 请尝试使用不同的方法直接对整张表的缺失值进行处理
#对Age列的数据缺失值进行处理
df[df['Age']==None]=0#方法1
df
df[df['Age'].isnull()] = 0 #方法2
df
df[df['Age'] == np.nan] = 0#方法3
df.head()
【思考】检索空缺值用np.nan要比用None好,这是为什么?
【答】数值列读取数据后,空缺值的数据类型为float64所以用None一般索引不到,比较的时候最好用np.nan
#丢弃掉缺失值
df.dropna()
#填充缺失值
df.fillna(0)
【思考】dropna和fillna有哪些参数,分别如何使用呢?
fillna方法
值填充与前后向填充(分别与ffill方法和bfill方法等价)
1.df[‘Physics’].fillna(method=‘ffill’).head()
2.df[‘Physics’].fillna(method=‘backfill’).head()
3.填充中的对齐特性
df_f.fillna(df_f.mean())
dropna方法
1.axis参数
df_d.dropna(axis=0)
对行无缺失值的
2.df_d.dropna(axis=1)
对列无缺失值的
3.how参数(可以选all或者any,表示全为缺失去除和存在缺失去除)
df_d.dropna(axis=1,how=‘all’)
删除所有都是缺失值的列
4.subset参数(即在某一组列范围中搜索缺失值)
df_d.dropna(axis=0,subset=[‘B’,‘C’])
删除B,C含有缺失值的行
2.2重复值观察与处理
由于这样那样的原因,数据中会不会存在重复值呢,如果存在要怎样处理呢?
2.2.1任务一:请查看数据中的重复值
df[df.duplicated()]
2.2.2 任务二:对重复值进行处理
(1)重复值有哪些处理方式呢?
(2)处理我们数据的重复值
df.drop_duplicates().head()#对重复值进行处理
2.2.3 任务三:将前面清洗的数据保存为csv格式
df.to_csv('test_clear.csv')
2.3 特征观察与处理
我们对特征进行一下观察,可以把特征大概分为两大类:
数值型特征:Survived ,Pclass, Age ,SibSp, Parch, Fare,其中Survived, Pclass为离散型数值特征,Age,SibSp, Parch, Fare为连续型数值特征
文本型特征:Name, Sex, Cabin,Embarked, Ticket,其中Sex, Cabin, Embarked, Ticket为类别型文本特征。
数值型特征一般可以直接用于模型的训练,但有时候为了模型的稳定性及鲁棒性会对连续变量进行离散化。文本型特征往往需要转换成数值型特征才能用于建模分析。
2.3.1 任务一:对年龄进行分箱(离散化)处理
(1) 分箱操作是什么?
简单点说就是将不同的东西,按照特定的条件放到一个指定容器里,比如水果 把绿色的放一个篮子里,红色一个篮子等等,这个篮子就是箱,而水果就是数据 颜色就是条件
(2) 将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示
#将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示
df['AgeBand'] = pd.cut(df['Age'], 5,labels = ['1','2','3','4','5'])
df.head()
df.to_csv('test_ave.csv')
(3) 将连续变量Age划分为[0,5) [5,15) [15,30) [30,50) [50,80)五个年龄段,并分别用类别变量12345表示
#将连续变量Age划分为[0,5) [5,15) [15,30) [30,50) [50,80)五个年龄段,并分别用类别变量12345表示
df['AgeBand'] = pd.cut(df['Age'],[0,5,15,30,50,80],labels = ['1','2','3','4','5'])
df.head(3)
df.to_csv('test_cut.csv')
(4) 将连续变量Age按10% 30% 50 70% 90%五个年龄段,并用分类变量12345表示
#将连续变量Age按10% 30% 50 70% 90%五个年龄段,并用分类变量12345表示
df['AgeBand'] = pd.qcut(df['Age'],[0,0.1,0.3,0.5,0.7,0.9],labels = ['1','2','3','4','5'])
df.head()
df.to_csv('test_pr.csv')
(5) 将上面的获得的数据分别进行保存,保存为csv格式
2.3.2 任务二:对文本变量进行转换
(1) 查看文本变量名及种类
#查看类别文本变量名及种类
#方法一: value_counts
df['Sex'].value_counts()
df['Cabin'].value_counts()
df['Embarked'].value_counts()
#方法二: unique
df['Sex'].unique()
df['Sex'].nunique()
(2) 将文本变量Sex, Cabin ,Embarked用数值变量12345表示
#将类别文本转换为12345
#方法一: replace
df['Sex_num'] = df['Sex'].replace(['male','female'],[1,2])
df.head()
#方法二: map
df['Sex_num'] = df['Sex'].map({'male': 1, 'female': 2})
df.head()
#方法三: 使用sklearn.preprocessing的LabelEncoder
from sklearn.preprocessing import LabelEncoder
for feat in ['Cabin', 'Ticket']:
lbl = LabelEncoder()
label_dict = dict(zip(df[feat].unique(), range(df[feat].nunique())))
df[feat + "_labelEncode"] = df[feat].map(label_dict)
df[feat + "_labelEncode"] = lbl.fit_transform(df[feat].astype(str))
df.head()
(3) 将文本变量Sex, Cabin, Embarked用one-hot编码表示
2.3.3 任务三(附加):从纯文本Name特征里提取出Titles的特征(所谓的Titles就是Mr,Miss,Mrs等)
df['Title'] = df.Name.str.extract('([A-Za-z]+)\.', expand=False)
df.head()
# 保存上面的为最终结论
df.to_csv('test_fin.csv')
通过对数据的清洗及特征值,对数据进行缺失值的进行观察和处理,查看和处理了重复值,对特征进行观察和处理(分箱、对文本变量进行转换),初步动手进行了数据清洗和分析。