[机器学习]循环神经网络

本文介绍了循环神经网络的基础——RNN及其存在的问题,然后详细讲解了为解决这些问题引入的LSTM和GRU。接着讨论了FC-LSTM如何考虑空间关系,最后阐述了Conv-LSTM通过卷积改进的空间表示。这些不同类型的RNN变体在处理序列数据时各具优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.RNN

原始的循环神经网络,本质是全连接网络,输入分为两个部分,分别为上一层的输出以及本层的输入。
在这里插入图片描述
网络中维护三个参数,本层输入的权重W,上层输出的权重U以及偏置b。

优点:
1.RNN很适合处理序列数据,因为考虑了之前的信息。
2.可以和CNN一起使用得到更好的效果。

缺点:
1.由于在训练过程中W,U和b是同一组参数,容易出现梯度爆炸或者梯度消失的情况。
2.RNN相较于其他CNN和全连接需要更多的显存空间,更难训练。
3.如果使用tanh、relu作为激活函数,没办法处理太长的序列。

2.LSTM

为了解决梯度消失和爆炸以及更好的预测分类序列数据等问题,产生了LSTM。
在这里插入图片描述
相比于普通的RNN,LSTM多了三个控制,分别为输入控制f,输入控制i和输出控制o,同时维持一条记忆线,用来动态的控制哪些更重要的信息需要被保留到下一层,哪些不重要的信息可以被一遗忘,对于每一个门都有自己对应的权重与偏置,在RNN的内部实现了解耦合,避免了梯度消失于梯度爆炸的情况。

3.GRU

GRU是2014年提出的一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值