线性代数: 行列式的魔法:从历史到几何,一次性讲透!

0. 学前趣闻

行列式的符号为什么 ∣ A ∣ |A| A

  1. 历史起源

    • 行列式最早由日本数学家关孝和于1683年在研究方程组时发现
    • 但用两条竖线表示行列式的记号 ∣ A ∣ |A| A 是由柯西(Cauchy)在1812年首次引入
  2. 符号选择的原因

    • 直观性:竖线 ∣ | 在视觉上像一个"围栏"或"边界",暗示着它包含了一个完整的数学对象
    • 区分性:需要一个符号能够清晰地与普通括号 ( ) () ()、方括号 [ ] [] [] 区分开
    • 几何意义:两条竖线也可以理解为"测量"的含义,因为行列式在几何上表示面积或体积
  3. 其他常见表示方法
    d e t ( A ) = d e t ( a b c d ) = ∣ a b c d ∣ det(A) = det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} det(A)=det(acbd)= acbd

  4. 符号的演变

    • 最初期:使用 ∑ 符号表示行列式中元素的求和
    • 中期:使用 D 或 Det 表示
    • 现代:统一使用 ∣ A ∣ |A| A d e t ( A ) det(A) det(A)
  5. 使用这个符号的优势

    • 简洁明了
    • 书写方便
    • 容易与矩阵的其他运算区分
    • 在手写时不容易出错

这个符号的选择体现了数学符号的一个重要原则:既要简单易用,又要富有意义。 ∣ A ∣ |A| A 这个符号完美地满足了这两个要求。

行列式中的'代表什么,比如A’

使用A’(读作"A prime")是数学中的一种常见符号约定:

  • 撇号(')通常用来表示对某个对象进行了变换或修改
  • 在矩阵运算中,它特别用来表示经过初等变换后的矩阵
  • 这种记号简洁明了,能够清晰地表达出这是原矩阵的一个变体

矩阵A’是通过对某个原始矩阵A进行行变换得到的。具体来说:

  1. 第一行保持不变: [ a b ] [a \quad b] [ab]

  2. 第二行是通过将第一行的k倍加到原始第二行上得到的:
    [ c d ] + k [ a b ] = [ c + k a d + k b ] [c \quad d] + k[a \quad b] = [c+ka \quad d+kb] [cd]+k[ab]=[c+kad+kb]

这种变换的意义在于:

  1. 它保持了矩阵的行列式不变
  2. 这是求解线性方程组时常用的一种基本行变换
  3. 在高斯消元法中经常使用这种变换来简化矩阵

0. 温馨提示: 文章的番外才是核心!!

1. 什么是行列式?

行列式是一个重要的数学概念,它将方阵映射到一个标量。对于一个 n×n 的方阵,其行列式是一个数字,记作 d e t ( A ) det(A) det(A) ∣ A ∣ |A| A

简单的例子

对于2×2矩阵:
A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd]

其行列式为:
∣ A ∣ = a d − b c |A| = ad - bc A=adbc

2. 几何意义

行列式有重要的几何意义:

  • 2×2矩阵的行列式表示对应平行四边形的面积
  • 3×3矩阵的行列式表示对应平行六面体的体积
  • 行列式的正负表示变换是否改变了坐标系的朝向

3. 行列式的性质

  1. 行列式为零的意义

    • 矩阵行列式为0,表示矩阵是奇异的(不可逆)
    • 对应的几何变换会导致降维
  2. 基本性质
    ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB| = |A| \cdot |B| AB=AB
    ∣ A T ∣ = ∣ A ∣ |A^T| = |A| AT=A

  3. 行列式与矩阵运算

    • 某行(列)乘以k,行列式变为原来的k倍
    • 互换两行(列),行列式变号
    • 某行(列)的k倍加到另一行(列),行列式不变

4. 计算方法

4.1 二阶行列式

对于2×2矩阵:
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} a11a21a12a22 =a11a22a12a21

4.2 三阶行列式

对于3×3矩阵:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} a11a21a31a12a22a32a13a23a33

可以用萨吕法则计算:
∣ A ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 |A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} A=a11a22a33+a12a23a31+a13a21a32a13a22a31a12a21a33a11a23a32

5. 应用实例

5.1 克莱姆法则解方程组

对于方程组:
{ a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 \begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases} {a11x+a12y=b1a21x+a22y=b2

解为:
x = ∣ A x ∣ ∣ A ∣ , y = ∣ A y ∣ ∣ A ∣ x = \frac{|A_x|}{|A|}, y = \frac{|A_y|}{|A|} x=AAx,y=AAy

其中:
∣ A ∣ = ∣ a 11 a 12 a 21 a 22 ∣ |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} A= a11a21a12a22

博主文章导航: [[10-03-克莱姆法则解方程组]]

5.2 求逆矩阵

对于2×2矩阵,其逆矩阵可以用行列式表示:
A − 1 = 1 ∣ A ∣ [ a 22 − a 12 − a 21 a 11 ] A^{-1} = \frac{1}{|A|}\begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} A1=A1[a22a21a12a11]
[[10-04-行列式与矩阵求逆]]

6. 练习例题

例1:计算行列式
∣ 2 1 3 4 ∣ \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} 2314

解:
∣ A ∣ = ( 2 × 4 ) − ( 1 × 3 ) = 8 − 3 = 5 |A| = (2 \times 4) - (1 \times 3) = 8 - 3 = 5 A=(2×4)(1×3)=83=5

例2:使用行列式求解方程组
{ 3 x + 2 y = 12 x − 2 y = 0 \begin{cases} 3x + 2y = 12 \\ x - 2y = 0 \end{cases} {3x+2y=12x2y=0

解:
∣ A ∣ = ∣ 3 2 1 − 2 ∣ = − 8 |A| = \begin{vmatrix} 3 & 2 \\ 1 & -2 \end{vmatrix} = -8 A= 3122 =8

7. 注意事项

  1. 计算行列式时要注意正负号
  2. n阶行列式有n!项
  3. 行列式为0时,对应矩阵不可逆
  4. 计算高阶行列式时,可以使用降阶方法

行列式是线性代数中的基础概念,掌握它对于理解矩阵运算、线性变换和解线性方程组都非常重要。

番外

番外零: 为什么是 ∣ A ∣ = a d − b c |A| = ad - bc A=adbc

image.png

  1. 几何意义解释

    行列式 ∣ A ∣ |A| A 代表由矩阵的两个行向量所构成的平行四边形的有向面积:

    • 第一个向量是 ( a , b ) (a,b) (a,b)
    • 第二个向量是 ( c , d ) (c,d) (c,d)
    • 平行四边形的面积可以通过叉积计算: a d − b c ad-bc adbc
  2. 代数推导
    对于2×2矩阵,行列式可以通过对角线法则得到:
    ∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d \end{vmatrix} acbd

    • 主对角线乘积: a × d = a d a \times d = ad a×d=ad(正号)
    • 副对角线乘积: b × c = b c b \times c = bc b×c=bc(负号)
    • 相减得到: a d − b c ad-bc adbc
  3. 排列理论解释
    行列式的定义来自于排列:

    • 对于2×2矩阵,只有两种排列: ( 1 , 2 ) (1,2) (1,2) ( 2 , 1 ) (2,1) (2,1)
    • ( 1 , 2 ) (1,2) (1,2) 是偶排列,对应 a d ad ad(正号)
    • ( 2 , 1 ) (2,1) (2,1) 是奇排列,对应 b c bc bc(负号)
    • 所以最终结果是 a d − b c ad-bc adbc
  4. 为什么不是其他形式

    • a d + b c ad+bc ad+bc 不能保持行列式的性质(如行交换改变符号)
    • a c − d b ac-db acdb 不能保持面积的几何意义
    • 只有 a d − b c ad-bc adbc 同时满足:
      • 几何性质(面积)
      • 代数性质(行交换改变符号)
      • 线性性质(分配率)

这就是为什么2×2矩阵的行列式必须是 a d − b c ad-bc adbc 的形式,因为只有这种形式才能同时满足行列式的所有必要性质。

番外一: ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB| = |A| \cdot |B| AB=AB 为啥成立?

  1. 首先,对于2×2矩阵的情况

设:
A = [ a 11 a 12 a 21 a 22 ] , B = [ b 11 b 12 b 21 b 22 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} A=[a11a21a12a22],B=[b11b21b12b22]

计算 A B AB AB
A B = [ ( a 11 b 11 + a 12 b 21 ) ( a 11 b 12 + a 12 b 22 ) ( a 21 b 11 + a 22 b 21 ) ( a 21 b 12 + a 22 b 22 ) ] AB = \begin{bmatrix} (a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) \\ (a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) \end{bmatrix} AB=[(a11b11+a12b21)(a21b11+a22b21)(a11b12+a12b22)(a21b12+a22b22)]

那么:
∣ A B ∣ = ( a 11 b 11 + a 12 b 21 ) ( a 21 b 12 + a 22 b 22 ) − ( a 11 b 12 + a 12 b 22 ) ( a 21 b 11 + a 22 b 21 ) |AB| = (a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22}) - (a_{11}b_{12} + a_{12}b_{22})(a_{21}b_{11} + a_{22}b_{21}) AB=(a11b11+a12b21)(a21b12+a22b22)(a11b12+a12b22)(a21b11+a22b21)

展开后:
∣ A B ∣ = ( a 11 a 22 − a 12 a 21 ) ( b 11 b 22 − b 12 b 21 ) = ∣ A ∣ ⋅ ∣ B ∣ |AB| = (a_{11}a_{22} - a_{12}a_{21})(b_{11}b_{22} - b_{12}b_{21}) = |A| \cdot |B| AB=(a11a22a12a21)(b11b22b12b21)=AB

  1. 几何解释

让我通过可视化来解释这个性质:

image.png

  1. 这个性质的意义

    这个性质告诉我们:

    • 如果矩阵A将面积放大了 ∣ A ∣ |A| A
    • 矩阵B将面积放大了 ∣ B ∣ |B| B
    • 那么它们的组合变换将面积放大了 ∣ A ∣ ⋅ ∣ B ∣ |A| \cdot |B| AB
  2. 重要应用

这个性质有很多重要应用:

a) 求逆矩阵时
∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}| = \frac{1}{|A|} A1=A1
因为 ∣ A A − 1 ∣ = ∣ A ∣ ∣ A − 1 ∣ = 1 |AA^{-1}| = |A||A^{-1}| = 1 AA1=A∣∣A1=1

b) 检验矩阵乘法计算

  • 如果计算 A B AB AB
  • 可以分别计算 ∣ A ∣ |A| A ∣ B ∣ |B| B ∣ A B ∣ |AB| AB
  • 验证是否满足 ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB| = |A| \cdot |B| AB=AB

c) 判断可逆性

  • 如果 ∣ A B ∣ = 0 |AB| = 0 AB=0
  • 那么要么 ∣ A ∣ = 0 |A| = 0 A=0,要么 ∣ B ∣ = 0 |B| = 0 B=0
  • 或者两者都为0
  1. 推广到高阶矩阵

这个性质对于任意 n×n 矩阵都成立:

  • 3×3矩阵:表示体积的变化
  • 更高维:表示超体积的变化

理解这个性质很重要,因为它:
4. 建立了矩阵乘法和几何变换之间的联系
5. 简化了复杂矩阵运算的验证
6. 帮助理解线性变换的复合效果

番外二:为什么 ∣ A T ∣ = ∣ A ∣ |A^T| = |A| AT=A 成立。

1. 先看2×2矩阵的例子

原矩阵 A A A
A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd]

转置后 A T A^T AT
A T = [ a c b d ] A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix} AT=[abcd]

计算它们的行列式:

  • ∣ A ∣ = a d − b c |A| = ad - bc A=adbc
  • ∣ A T ∣ = a d − c b = a d − b c |A^T| = ad - cb = ad - bc AT=adcb=adbc

可以看到 ∣ A T ∣ = ∣ A ∣ |A^T| = |A| AT=A

2. 为什么这个性质成立?

image.png

  1. 几何意义解释

    • 矩阵 A A A 的行列式表示由其列向量构成的平行四边形的面积
    • 矩阵 A T A^T AT 的行列式表示由其列向量(即 A A A 的行向量)构成的平行四边形的面积
    • 这两个平行四边形实际上是全等的,只是视角不同
    • 因此它们的面积必然相等
  2. 代数性质解释
    计算行列式时:

    • A A A 的行列式按行展开
    • A T A^T AT 的行列式按列展开
    • 这两种展开方式得到的结果是相同的
  3. 实际应用
    这个性质在很多计算中都很有用:

  • 有时候按行计算行列式更容易
  • 有时候按列计算行列式更容易
  • 这个性质告诉我们可以选择更简单的方式

举个例子:
A = [ 2 1 3 4 ] A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} A=[2314]

A T = [ 2 3 1 4 ] A^T = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} AT=[2134]

两者的行列式都是:
∣ A ∣ = ∣ A T ∣ = ( 2 × 4 ) − ( 1 × 3 ) = 8 − 3 = 5 |A| = |A^T| = (2 \times 4) - (1 \times 3) = 8 - 3 = 5 A=AT=(2×4)(1×3)=83=5

这个性质说明矩阵转置不会改变其行列式的值,这在矩阵理论和实际应用中都是一个非常重要的性质。

番外三:某行(列)乘以k,行列式变为原来的k倍

1. 通过2×2矩阵来理解

原矩阵:
A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd]

将第一行乘以 k:
A ′ = [ k a k b c d ] A' = \begin{bmatrix} ka & kb \\ c & d \end{bmatrix} A=[kackbd]

计算行列式:
∣ A ′ ∣ = ( k a ⋅ d ) − ( k b ⋅ c ) = k ( a d − b c ) = k ∣ A ∣ |A'| = (ka \cdot d) - (kb \cdot c) = k(ad - bc) = k|A| A=(kad)(kbc)=k(adbc)=kA

2. 几何意义

image.png

从几何角度看:

  • 行列式代表平行四边形的面积
  • 将某一行(列)乘以k,相当于将平行四边形沿着一个方向拉伸k倍
  • 面积自然也变为原来的k倍

3. 实际例子

以一个具体的2×2矩阵为例:
A = [ 2 1 3 4 ] , ∣ A ∣ = 5 A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}, |A| = 5 A=[2314],A=5

将第一行乘以2:
A ′ = [ 4 2 3 4 ] , ∣ A ′ ∣ = 10 = 2 ∣ A ∣ A' = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}, |A'| = 10 = 2|A| A=[4324],A=10=2∣A

4. 这个性质的应用

这个性质在实际计算中很有用:

  • 可以将分数变成整数
    比如:
    |1/2  1|    1   |1  2|
    |3    4| = 2 * |3  4|
    
  • 可以提取公因子简化计算
  • 帮助判断行列式的大小关系

5. 注意事项

  • 这个性质对任意行或列都成立
  • 可以同时应用于多行或多列
  • 如果k=0,行列式变为0
  • 如果k为负数,也成立,但要注意符号

这个性质的理解对于:
10. 简化行列式计算
11. 理解线性变换
12. 解线性方程组
都很重要。

番外四:行列式互换两行(列),行列式变号

1. 几何解释

image.png

  • 行列式的几何意义是有向面积
  • 交换两行(列)相当于改变了基向量的方向
  • 这导致定向发生改变(从逆时针变为顺时针,或反之)
  • 定向改变意味着面积符号改变

2. 代数验证

以2×2矩阵为例:
A = [ a b c d ] , ∣ A ∣ = a d − b c A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, |A| = ad - bc A=[acbd],A=adbc

交换两行后:
A ′ = [ c d a b ] , ∣ A ′ ∣ = c b − a d = − ( a d − b c ) = − ∣ A ∣ A' = \begin{bmatrix} c & d \\ a & b \end{bmatrix}, |A'| = cb - ad = -(ad - bc) = -|A| A=[cadb],A=cbad=(adbc)=A

  1. 实际例子
    ∣ 2 1 3 4 ∣ = 5 \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 5 2314 =5

交换两行:
∣ 3 4 2 1 ∣ = − 5 \begin{vmatrix} 3 & 4 \\ 2 & 1 \end{vmatrix} = -5 3241 =5

  1. 重要应用
    这个性质在以下情况很有用:
  • 计算行列式时调整行(列)的位置
  • 判断排列的奇偶性
  • 解线性方程组时的变换
  1. 注意事项
  • 连续交换两次相同的行(列),行列式回到原值
  • 交换n次,符号变化n次
  • 这个性质对任意维度的矩阵都成立

这个性质反映了行列式的一个基本特征:它不仅描述了大小,还描述了方向。

番外五:某行(列)的k倍加到另一行(列),行列式不变

让我通过几何和代数两种方式来解释为什么某行(列)的k倍加到另一行(列),行列式不变。

1. 代数证明

对于2×2矩阵,设:
A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd]

将第一行的k倍加到第二行:
A ′ = [ a b c + k a d + k b ] A' = \begin{bmatrix} a & b \\ c+ka & d+kb \end{bmatrix} A=[ac+kabd+kb]

计算新的行列式:
∣ A ′ ∣ = a ( d + k b ) − b ( c + k a ) = a d + k a b − b c − k a b = a d − b c = ∣ A ∣ |A'| = a(d+kb) - b(c+ka) = ad+kab-bc-kab = ad-bc = |A| A=a(d+kb)b(c+ka)=ad+kabbckab=adbc=A

2. 几何解释

image.png

  • 原始平行四边形由两个向量确定
  • 向一个向量加上另一个向量的k倍,相当于沿着这个方向做剪切变换
  • 剪切变换保持平行四边形的面积不变

3. 实例说明

以具体矩阵为例:
∣ 2 1 3 4 ∣ = 5 \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 5 2314 =5

将第一行的2倍加到第二行:
∣ 2 1 7 6 ∣ = 5 \begin{vmatrix} 2 & 1 \\ 7 & 6 \end{vmatrix} = 5 2716 =5

  1. 这个性质的应用
  • 在高斯消元法中经常使用
  • 简化行列式计算
  • 解线性方程组时的基本变换
  1. 为什么这个性质很重要
  • 它是初等行变换的基础
  • 可以用来将矩阵化简为更容易计算的形式
  • 在线性方程组求解中起关键作用

这个性质说明了行列式在某些变换下的不变性,这对于矩阵计算和线性代数的应用都非常重要。

番外六: 三阶行列式计算规律

萨吕斯法则的核心思想

三阶行列式:
D = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} D= a11a21a31a12a22a32a13a23a33

image.png

计算步骤和技巧
  1. 记忆技巧:行列式右侧重复抄写前两行

    | a₁₁ a₁₂ a₁₃ | a₁₁ a₁₂ a₁₃
    | a₂₁ a₂₂ a₂₃ | a₂₁ a₂₂ a₂₃
    | a₃₁ a₃₂ a₃₃ | a₃₁ a₃₂ a₃₃
    
  2. 正项计算(蓝色对角线):

    • 主对角线: a 11 a 22 a 33 a_{11}a_{22}a_{33} a11a22a33
    • 右斜对角线: a 12 a 23 a 31 a_{12}a_{23}a_{31} a12a23a31
    • 左斜对角线: a 13 a 21 a 32 a_{13}a_{21}a_{32} a13a21a32
  3. 负项计算(红色对角线):

    • 右侧负对角线: a 13 a 22 a 31 a_{13}a_{22}a_{31} a13a22a31
    • 中间负对角线: a 11 a 23 a 32 a_{11}a_{23}a_{32} a11a23a32
    • 左侧负对角线: a 12 a 21 a 33 a_{12}a_{21}a_{33} a12a21a33
实际例题演示

计算下面的行列式:
D = ∣ 2 1 − 1 3 0 2 1 − 1 4 ∣ D = \begin{vmatrix} 2 & 1 & -1 \\ 3 & 0 & 2 \\ 1 & -1 & 4 \end{vmatrix} D= 231101124

解题步骤

  1. 先写出完整的展开式:

    2  1  -1 | 2  1
    3  0   2 | 3  0
    1  -1  4 |
    
  2. 计算正项(蓝色对角线):

    • 2 ⋅ 0 ⋅ 4 = 0 2 \cdot 0 \cdot 4 = 0 204=0
    • 1 ⋅ 2 ⋅ 1 = 2 1 \cdot 2 \cdot 1 = 2 121=2
    • ( − 1 ) ⋅ 3 ⋅ ( − 1 ) = 3 (-1) \cdot 3 \cdot (-1) = 3 (1)3(1)=3
    • 正项和 = 0 + 2 + 3 = 5 0 + 2 + 3 = 5 0+2+3=5
  3. 计算负项(红色对角线):

    • ( − 1 ) ⋅ 0 ⋅ 1 = 0 (-1) \cdot 0 \cdot 1 = 0 (1)01=0
    • 2 ⋅ 2 ⋅ ( − 1 ) = − 4 2 \cdot 2 \cdot (-1) = -4 22(1)=4
    • 1 ⋅ 3 ⋅ 4 = 12 1 \cdot 3 \cdot 4 = 12 134=12
    • 负项和 = 0 − 4 + 12 = 8 0 - 4 + 12 = 8 04+12=8
  4. 最终结果:
    D = 5 − 8 = − 3 D = 5 - 8 = -3 D=58=3

使用技巧
  1. 对角线追踪法:用手指或笔沿着对角线追踪,避免遗漏或重复
  2. 正负区分:正项对角线都是从左上到右下方向,负项对角线都是从右上到左下方向
  3. 零元素利用:若行列式中有零元素,优先计算含零元素的对角线(因为乘积必为零)
  4. 数字简化:先做乘法,最后统一做加减法,减少计算错误

通过这种可视化的方式和具体的例子,相信你能更好地理解和运用萨吕斯法则。记住,熟能生巧,多做练习才能真正掌握这个技巧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Agent首席体验官

您的打赏是我继续创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值