【leetcode】【剑指offer Ⅱ】020. 回文子字符串的个数

本文介绍了一种使用动态规划解决回文子串计数问题的方法。通过定义dp[i][j]来判断字符串s[i,...,j]是否为回文串,并通过状态转移方程实现高效求解。

问题描述:

  • 给定一个字符串 s,返回字符串中回文子字符串的个数。

核心思路:

  • 标准动态规划题目,相当于双指针思想。
    • dp[i][j] 表示 s[i,...,j] 能否组成回文串。【如果 dp[i][j] = 1 说明 s[i,...,j] 是回文串,因而统计 dp 数组中 1 的个数即可】
  • dp 数组中的状态转移如下:
    1. s[i] != s[j],则 dp[i][j]0
    2. s[i] == s[j],则需要判断索引 ij 的距离:
      1. j-i <= 1,则 dp[i][j]1
      2. j-i > 1,则 dp[i][j] 的值取决于 dp[i+1][j-1]。【相当于字符串双指针同时向内移动,即 s[i,...,j] 是否为回文串现在取决于 s[i+1,...,j-1]

代码实现:

class Solution
{
public:
    int countSubstrings(string s)
    {
        int cnt = 0;
        int m = s.size();
        vector<vector<int>> dp(m, vector<int>(m));
        for(int i = m-1; i >= 0; --i) for(int j = i; j < m; ++j)
        {
            if(s[i] == s[j] and (j-i <= 1 or dp[i+1][j-1]))
                dp[i][j] = 1, ++cnt;
        }
        return cnt;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值