【leetcode】【2022/11/14】805. 数组的均值分割

问题描述:

  • 给定你一个整数数组 nums,我们要将 nums 数组中的每个元素移动到 A 数组或者 B 数组中,使得 A 数组和 B 数组不为空,并且 average(A) == average(B)
    • 如果可以完成则返回 true,否则返回 false
    • 满足 1 <= nums.length <= 30

核心思路:

  • 该题较难,考察了数学推导 + 位运算 + 折半搜索。
  • 数学推导部分如下:
    • 首先经过推导可得知,数组 A 或数组 B 的平均值原数组 nums 的平均值是相等的。
    • 因此将数组中所有数值减去 sum(nums)/n,原问题就可以转换为找到一个数组 A 其求和为 0。【其中 n 为数组长度】
    • 而直接求 nums 的平均值可能会得到浮点值影响最后结果的精度,所以在求平均值前先将 nums 中所有数值乘以数组的长度,再将所有数值减去 sum(nums),仍然可以将问题转化为找到一个数组 A 其求和为 0
    • 也就是说,对每一个数值 num 进行 num * n - sum(nums) 的预处理,最后找到 nums 中哪些数求和为 0 即可。
  • 而想要计算出所有的子集求和情况,就需要用位运算来维护元素的存取情况:
    • 因为 1 <= n <= 30,所以所有子集的存取有 2 n 2^{n} 2n 种情况,用第 i 位用来判断数组第 i 个元素是否存入数组 A
    • 因此我们遍历 [1, 1 << n) 即遍历所有存取情况;在每一个子集中遍历数组元素,来获得当前子集求和情况。
    • 但如此计算就是暴力求解,时间复杂度为 O ( 2 n × n ) \mathcal{O}(2^n\times n) O(2n×n),当 n = 30 时自然会超时。
  • 解决的办法就是折半搜索:【该思想是本题解的主要难点】
    • 顾名思义就是搜索前半段和后半段,时间复杂度就会缩减为 O ( 2 n 2 × n ) \mathcal{O}(2^{\frac{n}{2}}\times n) O(22n×n)
    • 但此时需要进行讨论,最后子集 A 可能出现三种情况:
      1. 子集元素全部存在于数组前半段;【此时搜索前半段就可以得到某个子集求和为 0
      2. 子集元素全部存在于数组后半段;【此时搜索后半段就可以得到某个子集求和为 0
      3. 子集元素存在于前半段和后半段。
    • 情况 3 较为复杂,此时就需要用空间换时间,利用哈希表来保存前半段的所有子集和,在后半段的遍历中利用哈希表中的值即可。
    • 用哈希表来保存值时,还可能出现前半段和后半段元素同时全选的情况,此时需要避免判断该情况,具体看代码注释即可。
  • 该题的动态规划是根据 sum(nums) 的范围推导的,也就是根据值域大小来获得所有子集求和的情况,官方题解给出的动态规划解法时间复杂度为 O ( n 2 × s u m ( n u m s ) ) \mathcal{O}(n^2\times sum(nums)) O(n2×sum(nums)),一旦求和的范围过大,动态规划解法就可能会超时。

代码实现:

  • 折半搜索解法代码实现如下:
    class Solution {
    public:
        bool splitArraySameAverage(vector<int>& nums) {
            int n = nums.size(); // n 的取值范围为 [1, 30]
            if(n == 1) return false;
            int sum = accumulate(nums.begin(), nums.end(), 0);
            for(int& num : nums) num = num * n - sum; // 原本是 num = num - sum/n,但这样写会有精度问题
            int m = n >> 1; // 折半计算
            unordered_set<int> ss;
            for(int i = 1; i < (1 << m); ++i) { // 二进制表示选择结果
                int t = 0;
                for(int j = 0; j < m; ++j)
                    if(i & (1 << j)) t += nums[j]; // 求和子数组
                if(t == 0) return true;
                ss.insert(t);
            }
            for(int i = 1; i < 1 << (n-m); ++i) {
                int t = 0;
                for (int j = 0; j < (n-m); ++j)
                    if(i & (1 << j)) t += nums[m+j];
                if(t == 0 or (i != (1 << (n-m))-1 and ss.count(-t))) return true;
                // 注意 i != (1 << (n-m))-1 表示不能“同时”左子数组全选和右子数组全选,因为同时全选就是整个数组全部选择,则必定返回 true
                // 左子数组全选的情况已经存在 ss 中,所以遍历右子数组之后,判断完右子数组全选不为 0 之后,就需要避免左右子数组同时全选的情况
            }
            return false;
        }
    };
    

参考内容:

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值