python 对经典数据结构的简单实现

前言

我们在日常开发中,可能语言本身的数据结构难以满足开发。这里简单的来实现一些经典的数据结构。

队列

我们可以使用list轻松的实现队列

queue1 = []
queue1.insert(0, 'a')
queue1.insert(0, 'b')
queue1.insert(0, 'c')
print(queue1)
['c', 'b', 'a']
queue1.pop()
a
queue1.pop()
b

然而,这是低效的,因为当您向开始添加新元素时,列表必须按一个索引移动所有元素。

通常最好的做法是使用Python的collections模块中的deque类。deque对追加和弹出操作进行了优化。

queue2 = deque()
queue2.append('a')
queue2.append('b')
queue2.append('c')
print(queue2)
deque(['a', 'b', 'c'])
queue2.popleft()
a
queue2.popleft()
b

同样的,我们可以使用list轻松实现队列。

stack1 = []
stack1.append("a")
stack1.append("b")
stack1.append("c")
print(stack1)
 ['a', 'b', 'c']
stack1.pop()
c
stack1.pop()
b

在这里list对象可以实现自动缩放和对象清理,所以这里建议使用此方式。当然也可以通过deque来实现。

from collections import deque
stack2 = deque()
stack2.append("a")
stack2.append("b")
stack2.append("c")
stack2.pop()
stack2.pop()
stack2.pop()
c
b
a

链表

链表实现的相对较为复杂

#先定一个node的类
class Node():                  #value + next
    def __init__ (self, value = None, next = None):
        self._value = value
        self._next = next

    def getValue(self):
        return self._value

    def getNext(self):
        return self._next

    def setValue(self,new_value):
        self._value = new_value

    def setNext(self, new_next):
        self._next = new_next

#实现Linked List及其各类操作方法
class LinkedList():
    def __init__(self):      #初始化链表为空表
        self._head = Node() 
        self._tail = None
        self._length = 0

    #检测是否为空
    def isEmpty(self):
        return self._head == None  

    #add在链表前端添加元素:O(1)
    def add(self,value):
        newnode = Node(value, None)    #create一个node(为了插进一个链表)
        newnode.setNext(self._head)   
        self._head = newnode

    #append在链表尾部添加元素:O(n)
    def append(self, value):
        newnode = Node(value)
        if self.isEmpty():
            self._head = newnode   #若为空表,将添加的元素设为第一个元素
        else:
            current = self._head
            while current.getNext() != None:
                current = current.getNext()   #遍历链表
            current.setNext(newnode)   #此时current为链表最后的元素

    #search检索元素是否在链表中    
    def search(self,value):
        current=self._head
        foundvalue = False
        while current != None and not foundvalue:
            if current.getValue() == value:
                foundvalue = True
            else:
                current=current.getNext()
        return foundvalue

    #index索引元素在链表中的位置
    def index(self, value):
        current = self._head
        count = 0
        found = None
        while current != None and not found:
            count += 1
            if current.getValue()==value:
                found = True
            else:
                current=current.getNext()
        if found:
            return count
        else:
            raise ValueError ('%s is not in linkedlist'%value)

    #remove删除链表中的某项元素
    def remove(self, value):
        current = self._head
        pre = None
        while current!=None:
            if current.getValue() == value:
                if not pre:
                    self._head = current.getNext()
                else:
                    pre.setNext(current.getNext())
                break
            else:
                pre = current
                current = current.getNext()

    #insert链表中插入元素
    def insert(self, pos, value):
        if pos <= 1:
            self.add(value)
        elif pos > self.size():
            self.append(value)
        else:
            temp = Node(value)
            count = 1
            pre = None
            current = self._head
            while count < pos:
                count += 1
                pre = current
                current = current.getNext()
            pre.setNext(temp)
            temp.setNext(current)

树结构

树结构同样是软件开发过程中一种常见的数据结构。

from graphviz import Digraph
import uuid
from random import sample

# 二叉树
class Tree:

    def __init__(self, data=None, left=None, right=None):
        self.data = data    # 数据域
        self.left = left    # 左子树
        self.right = right  # 右子树
        self.dot = Digraph(comment='Binary Tree')

    # 前序遍历
    def preorder(self):
        if self.data is not None:
            print(self.data, end=' ')
        if self.left is not None:
            self.left.preorder()
        if self.right is not None:
            self.right.preorder()

    # 中序遍历
    def inorder(self):
        if self.left is not None:
            self.left.inorder()
        if self.data is not None:
            print(self.data, end=' ')
        if self.right is not None:
            self.right.inorder()

    # 后序遍历
    def postorder(self):
        if self.left is not None:
            self.left.postorder()
        if self.right is not None:
            self.right.postorder()
        if self.data is not None:
            print(self.data, end=' ')

    # 层序遍历
    def levelorder(self):
        # 返回某个节点的左孩子
        def LChild_Of_Node(node):
            return node.left if node.left is not None else None
        # 返回某个节点的右孩子
        def RChild_Of_Node(node):
            return node.right if node.right is not None else None

        # 层序遍历列表
        level_order = []
        # 是否添加根节点中的数据
        if self.data is not None:
            level_order.append([self])

        # 二叉树的高度
        height = self.height()
        if height >= 1:
            # 对第二层及其以后的层数进行操作, 在level_order中添加节点而不是数据
            for _ in range(2, height + 1):
                level = []  # 该层的节点
                for node in level_order[-1]:
                    # 如果左孩子非空,则添加左孩子
                    if LChild_Of_Node(node):
                        level.append(LChild_Of_Node(node))
                    # 如果右孩子非空,则添加右孩子
                    if RChild_Of_Node(node):
                        level.append(RChild_Of_Node(node))
                # 如果该层非空,则添加该层
                if level:
                    level_order.append(level)

            # 取出每层中的数据
            for i in range(0, height):  # 层数
                for index in range(len(level_order[i])):
                    level_order[i][index] = level_order[i][index].data

        return level_order

    # 高度
    def height(self):
        # 空的树高度为0, 只有root节点的树高度为1
        if self.data is None:
            return 0
        elif self.left is None and self.right is None:
            return 1
        elif self.left is None and self.right is not None:
            return 1 + self.right.height()
        elif self.left is not None and self.right is None:
            return 1 + self.left.height()
        else:
            return 1 + max(self.left.height(), self.right.height())

    # 叶子节点
    def leaves(self):

        if self.data is None:
            return None
        elif self.left is None and self.right is None:
            print(self.data, end=' ')
        elif self.left is None and self.right is not None:
            self.right.leaves()
        elif self.right is None and self.left is not None:
            self.left.leaves()
        else:
            self.left.leaves()
            self.right.leaves()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值