AI预测蛋白质结构

基于AlphaFold2进行蛋白质结构预测的文章解析

RoseTTAFold: Tunyasuvunakool, K., Adler, J., Wu, Z. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021)

AlphaFold2: Accurate prediction of protein structures and interactions using a three-track neural network

上海交大超算平台用户手册 Documentation

AF2方法总结
展示了一种联合嵌入多序列比对 (MSA) 和成对特征的输出和损失估计新架构,可实现准确的端到端结构预测 训练神经网络来对regression target进行逐步迭代精化(Iterative refinement) 广泛运用了Attention架构。一个二维的表可以横着做再竖着做attention,一个图可以在各种局部结构上做attention,从而不断精化embedding的结构

还用到了Noisy student self-distillation,用带标签数据(氨基酸序列与三维坐标的对应)先训练一遍网络,然后用训练完的网络在无标签数据(仅有氨基酸序列)上预测一遍生成新的数据集,只保留预测得好的部分,然后把这两者混合拿来再进行训练 类似BERT的masking操作,对各种输入信息加噪音要求输出稳定,提高了鲁棒性和泛化能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dataloading...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值