C++实现二叉排序树的创建、中序遍历与删除操作

这篇博客详细介绍了二叉排序树的C++实现,包括构造函数、插入、中序遍历、查找和删除节点等操作。通过中序遍历可以得到递增有序序列,删除节点时考虑了叶子节点、单子树节点和双子树节点的情况。示例展示了如何使用该二叉排序树进行元素插入、查找和删除。
摘要由CSDN通过智能技术生成

 BinTree.h

#pragma once
#include<iostream>
#include<vector>
using namespace std;

/*
   二叉排序树,对二叉排序树进行中序遍历,可以得到一个递增的有序序列
*/


template<class T> class BinNode
{
public:
	T key;
	BinNode* lchild, * rchild;
};

template<class T> class BinTree
{
public:
	BinTree();//默认构造
	BinTree(T* arr, int len);//数组构造
	BinTree(vector<T> vec);//容器构造
	bool Insert(T& key);//插入节点
	void InOrder();//中序遍历外部接口
	bool Search(T key);//查找结点
	bool Delete(T& key);//删除结点
	bool isEmpty();//判断树是否为空树
	
private:
	BinNode<T>* TNode;
	void _InOrder(BinNode<T>* T);//中序遍历内部实现
	void _visit(BinNode<T>* T);//访问结点内部实现
	BinNode<T>* _Search(BinNode<T>* t, T key);//查找结点内部实现
	bool _isLeaf(BinNode<T>* t);//判断一个结点是不是叶子节点
	bool _isNodeWithTwoChild(BinNode<T>* t);//判断一个结点是否有左右两棵子树
	BinNode<T>* _NodeMin(BinNode<T>* t, BinNode<T>*& parent);//找到当前节点为根的树中的最小值
	BinNode<T>* _Delete(BinNode<T>*& t);//删除根结点 并返回新的根节点,
	                                     //针对只有一颗左或右子树的结点,删除结点时用到
};

template<class T> BinTree<T>::BinTree()//默认构造
{
	TNode = NULL;
}

template<class T> BinTree<T>::BinTree(T* arr, int len)//数组构造
{
	TNode = NULL;
	for (int i = 0; i < len; ++i)
	{
		Insert(*(arr + i));
	}
}

template<class T> BinTree<T>::BinTree(vector<T> vec)//容器构造
{
	TNode = NULL;
	for (int i = 0; i < vec.size(); ++i)
	{
		Insert(vec[i]);
	}
}

template<class T> bool BinTree<T>::Insert(T& key)//插入节点
{
	BinNode<T>* p = new BinNode<T>();//临时结点
	p->key = key;
	p->lchild = p->rchild = NULL;
	BinNode<T>* parent = new BinNode<T>();
	parent = NULL;
	if (TNode == NULL)//如果原树为空,则创建新树,插入的结点作为根节点
	{
		TNode = p;
		return true;
	}
	else
	{
		BinNode<T>* cur = TNode;
		while (cur)//插入的结点肯定是叶子结点,寻找叶子节点(parent)
		{
			if (cur->key == key)
				return false;
			else if (cur->key > key)
			{
				parent = cur;
				cur = cur->lchild;
			}
			else if (cur->key < key)
			{
				parent = cur;
				cur = cur->rchild;
			}
		}
		if (p->key < parent->key)
		{
			parent->lchild = p;
			return true;
		}
		else
		{
			parent->rchild = p;
			return true;
		}
	}
}

template<class T> void BinTree<T>::_visit(BinNode<T>* T)//访问结点
{
	cout << T->key << endl;
}

template<class T> void BinTree<T>::_InOrder(BinNode<T>* T)//递归中序遍历内部函数
{
	if (T != NULL)
	{
		_InOrder(T->lchild);
		_visit(T);
		_InOrder(T->rchild);
	}
}

template<class T> void BinTree<T>::InOrder()//中序遍历外部接口
{
	_InOrder(TNode);
}

template<class T> BinNode<T>* BinTree<T>::_Search(BinNode<T>* t, T key)//递归查找结点内部函数
{
	if (t == NULL)
		return NULL;
	else
	{
		if (t->key == key)
			return t;
		else if (t->key > key)
		{
			return _Search(t->lchild, key);
		}
		else if (t->key < key)
		{
			return _Search(t->rchild, key);
		}
	}
}
template<class T> bool BinTree<T>::Search(T key)//查找结点外部接口
{
	return _Search(TNode, key) == NULL ? false : true;;
}

template<class T> bool BinTree<T>::isEmpty()//判断树是否为空
{
	return TNode == NULL;
}

template<class T> bool BinTree<T>::_isLeaf(BinNode<T>* t)//判断一个结点是否是叶子结点
{
	if (!isEmpty())
	{
		if (t->lchild == NULL && t->rchild == NULL)
			return true;
		else
			return false;
	}
	else
		return false;
}

template<class T> bool BinTree<T>::_isNodeWithTwoChild(BinNode<T>* t)//判断一个结点是否有左右两棵子树
{
	if (!isEmpty())
	{
		if (t->lchild != NULL && t->rchild != NULL)
			return true;
		else
			return false;
	}
	else
		return false;
}

//找到当前节点为根的树中的最小值
template<class T> BinNode<T>* BinTree<T>::_NodeMin(BinNode<T>* t, BinNode<T>*& parent)
{
	BinNode<T>* cur = t;
	while (cur->lchild != NULL)
	{
		parent = cur;
		cur = cur->lchild;
	}
	return cur;
}

template<class T> BinNode<T>* BinTree<T>::_Delete(BinNode<T>*& t)//一棵树仅有左孩子或者有孩子
{
	if (t->lchild != NULL)
		return t->lchild;
	else
		return t->rchild;
}

//删除结点
template<class T> bool BinTree<T>::Delete(T& key)
{
	/*
	 先搜索找到目标结点z
		删除节点分为三种情况:
			1.若被删除节点z是叶节点,则直接删除,不会破坏二叉排序树的性质
			2.若被删除节点z只有一棵左子树或右子树,则让z的子树替代z的位置
			3.若被删除结点z有左右两棵子树,则令z的直接后继(或直接前驱)替代z,
			  然后从二叉排序树中删除这个直接后继(或直接前驱),这样就转换成了第一或第二种情况
    */
	if (isEmpty())
	{
		cout << "空树 无法删除" << endl;
		return false;
	}
	else
	{
		bool find = false;
		BinNode<T>* parent=TNode;
		//BinNode<T>* t = _Search(TNode, key,parent);
		BinNode<T>* cur = TNode;
		while (cur)
		{
			if (key < cur->key)
			{
				parent = cur;
				cur = cur->lchild;
			}
			else if (key > cur->key)
			{
				parent = cur;
				cur = cur->rchild;
			}
			else if (key == cur->key)
			{
				find = true;
				break;
			}
		}
		if (!find)
		{
			cout << "该结点未找到" << endl;
			return false;
		}
		if (_isLeaf(cur))
		{
			if (parent->lchild->key == key)
				parent->lchild = NULL;
			else
				parent->rchild = NULL;
			delete cur;
			return true;
		}
		else if (_isNodeWithTwoChild(cur))
		{//该结点右子树的最小值即为该节点的直接后继
			BinNode<T>* parent = cur;
			BinNode<T>* temp = _NodeMin(cur->rchild,parent);
			cur->key= temp->key;
			if (parent->rchild == temp)
				parent->rchild = _Delete(temp);
			else if (parent->lchild == temp)
				parent->lchild = _Delete(temp);
			delete temp;
			return true;
		}
		else
		{
			if (cur->lchild != NULL)
			{
				parent->lchild = _Delete(cur);
				delete cur;
				return true;
			}
			else 
			{
				parent->rchild = _Delete(cur);
				delete cur;
				return true;
			}	
		}
	}
}

源.cpp

#include <iostream>
#include "BinTree.h"
using namespace std;

void test01()
{
	int arr[] = { 19,13,11,8,50,26,21,30,66,60,70,63,61,65,71 };
	BinTree<int> T(arr,15);
	T.InOrder();
	cout << "-------" << endl;
	cout << T.Search(7) << endl;
	cout << T.Search(70) << endl;
	int a = 70;
	cout << "-------1" << endl;
	cout << T.Delete(a) << endl;
	cout << "-------------2" << endl;
	T.InOrder();
}

int main()
{
	test01();
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值