领扣算法入门------斐波纳契数列---js和java版

查找斐波纳契数列中第 N 个数。

所谓的斐波纳契数列是指:

  • 前2个数是 0 和 1 。
  • 第 i 个数是第 i-1 个数和第i-2 个数的和。

斐波纳契数列的前10个数字是:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...

样例

样例  1:
	输入:  1
	输出: 0
	
	样例解释: 
	返回斐波那契的第一个数字,是0.

样例 2:
	输入:  2
	输出: 1
	
	样例解释: 
	返回斐波那契的第二个数字是1.

注意事项

在测试数据中第 N 个斐波那契数不会超过32位带符号整数的表示范围

js语言

/**
 * @param n: an integer
 * @return: an ineger f(n)
 */
const fibonacci = function (n) {
    if(n==1){
       return 0; 
    }
    if(n==2){
        return 1;
    }
    var num1= 0,num2= 1,sum;
    for(var i = 3; i <= n; i++) {
        sum = num1 + num2;
        num1 = num2;
        num2 = sum;
    }
    return sum;
    
    
    //超时
    /*if(n==1){
       return 0; 
    }
    if(n==2){
        return 1;
    }
    return fibonacci(n-1)+fibonacci(n-2);*/
}

分析:使用递归如果数字过大会超时,非递归方式在数字大时耗时较少。

java语言

public class Solution {
    /**
     * @param n: an integer
     * @return: an ineger f(n)
     */
    public int fibonacci(int n) {
        // write your code here
        if(n==1){
             return 0; 
        }
        if(n==2){
            return 1;
        }
        int num1= 0;
        int num2= 1;
        int sum=0;
        for(int i = 3; i <= n; i++) {
            sum = num1 + num2;
            num1 = num2;
            num2 = sum;
        }
        return sum;
    }
}

分析:js中sum不用初始化,java中需要初始化。

注释:js是弱类型语言,使用变量并不要求一定要初始化,运行的时候,代码会自动转换并赋值。但是这样做会引起一些意想不到的问题,因此,对所有使用到的变量进行初始化,是非常有必要的。

可以使用二分查找算法来解决这个问题。 首先,我们可以将两个数组合并成一个有序数组,然后求出中位数。但是,这个方法的时间复杂度为 $O(m + n)$,不符合题目要求。因此,我们需要寻找一种更快的方法。 我们可以使用二分查找算法在两个数组中分别找到一个位置,使得这个位置将两个数组分成的左右两部分的元素个数之和相等,或者两部分的元素个数之差不超过 1。这个位置就是中位数所在的位置。 具体来说,我们分别在两个数组中二分查找,假设现在在第一个数组中找到了一个位置 $i$,那么在第二个数组中对应的位置就是 $(m + n + 1) / 2 - i$。如果 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m$ 个,或者 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m + 1$ 个,则这个位置就是中位数所在的位置。 具体的实现可以参考以下 Java 代码: ```java public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length, n = nums2.length; if (m > n) { // 保证第一个数组不大于第二个数组 int[] tmp = nums1; nums1 = nums2; nums2 = tmp; int t = m; m = n; n = t; } int imin = 0, imax = m, halfLen = (m + n + 1) / 2; while (imin <= imax) { int i = (imin + imax) / 2; int j = halfLen - i; if (i < imax && nums2[j - 1] > nums1[i]) { imin = i + 1; // i 太小了,增大 i } else if (i > imin && nums1[i - 1] > nums2[j]) { imax = i - 1; // i 太大了,减小 i } else { // i 是合适的位置 int maxLeft = 0; if (i == 0) { // nums1 的左边没有元素 maxLeft = nums2[j - 1]; } else if (j == 0) { // nums2 的左边没有元素 maxLeft = nums1[i - 1]; } else { maxLeft = Math.max(nums1[i - 1], nums2[j - 1]); } if ((m + n) % 2 == 1) { // 总元素个数是奇数 return maxLeft; } int minRight = 0; if (i == m) { // nums1 的右边没有元素 minRight = nums2[j]; } else if (j == n) { // nums2 的右边没有元素 minRight = nums1[i]; } else { minRight = Math.min(nums1[i], nums2[j]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } ``` 时间复杂度为 $O(\log\min(m, n))$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wcc_Learning

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值