python实现RSA算法,对数据进行加密认证

本文介绍了RSA非对称加密算法的数学原理,包括欧拉函数、费马小定理和逆元等概念,并详细阐述了算法的实现过程,包括生成素数、计算秘钥对以及加密解密步骤。通过使用Python实现RSA算法,确保了数据的安全加密认证。最后,讨论了RSA算法的安全性和应用场景。
摘要由CSDN通过智能技术生成


RSA

RSA是一种非对称加密体制,由公钥和私钥组成,数学原理是实数域的模余法。在使用私钥对数据进行加密后,可用公钥对数据进行解密。
在RSA算法中,设公钥为(D, N),私钥为(E, N),加密过程可以表示为 明 文 E   m o d   N = 密 文 明文^{E} \ mod\ N=密文 E mod N=
解密算法一致,把E换成D, 密 文 D   m o d   N = 明 文 密文^{D} \ mod\ N=明文  mod N=
当然,能这样计算对N、E、D是有要求的。

RSA是目前公认的安全算法,对它进行破解需要进行大数的质数分解,目前除了穷举法没有发现其他方法能计算,而穷举法在足够大的大数面前计算是需要非常漫长的时间的,因此当RSA算法采用的N、E、D足够大时,就认为是安全的。目前来说需要N达到1024bits。

一、数学原理

  1. 欧拉函数的性质:
    n = q p , p 和 q 是 两 个 质 数 ,   则 φ ( n ) = ( q − 1 ) ( p − 1 ) n = qp,p和q是两个质数,\ 则{\varphi}(n) = (q-1)(p-1) n=qppq, φ(n)=(q1)(p1)

  2. 欧拉定理:若a与n互质,即 g c d ( a , n ) = 1 , 则 a φ ( n )   ≡   1 m o d      n gcd(a,n)=1, 则a^{\varphi(n)}\ {\equiv}\ 1\mod\ n gcd(a,n)=1,aφ(n)  1mod n
    进一步,若n是质数, a n − 1   ≡   1 m o d    n a^{n-1}\ {\equiv}\ 1\mod n an1  1modn a n   ≡   a m o d    n a^{n}\ {\equiv}\ a\mod n an  amodn

  3. 费马小定理:若n是质数,a与n互质,,则 a n − 1   ≡   1 m o d      n a^{n-1}\ {\equiv}\ 1 \mod \ n an1  1mod n

  4. 逆元:如果 a b   ≡   1 m o d      n , 则 a 和 b 互 为 逆 元 ab\ {\equiv}\ 1\mod\ n, 则a和b互为逆元 ab  1mod n,ab

  5. RSA加密的条件:
    · n = p × q n = p{\times}q n=p×q
    · L = φ ( n ) = ( p − 1 ) ( q − 1 ) L = {\varphi}(n) = (p-1)(q-1) L=φ(n)=(p1)(q1)
    · 随机选取 1 < e < L , 使 得 g c d ( e , L ) = 1 1<e<L,使得gcd(e,L)=1 1<e<L使gcd(e,L)=1
    ·计算 e d   ≡   1 m o d      L ed\ {\equiv}\ 1\mod\ L ed  1mod L
    ·公钥对 =(n, d),私钥对 =(n, e)

    继续设明文 = M,密文 = C,现在来证明可以用上述方法加解密的条件。
    M E   m o d   N = C ,   C D m o d      N = M M^{E}\ mod\ N = C,\ C^{D}\mod\ N = M ME mod N=

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值