JJ's Sentinelhub study notes
Interpreting Optical Remote Sensing Images
Four main types of information
Radiometric Information & Spectral Information
There are 4 main types of information contained in an optical image are often utilized for image interpretation:
- Radiometric Information (i.e. Brightness, intensity, tone),
- Spectral Information (i.e. color, hue)
- Textual Information,
- Geometric and Contextual Information
Detailed Info is showing as the following:
Panchromatic Images
A panchromatic images consists of only one band. It is usually displayed as a grey scale image, i.e. the displayed brightness of a particular pixel is proportional to the pixel digital number which is related to the intensity of solar radiation reflected by the targets in the pixel and detected by the detector.
Thus, a panchromatic image may be similarly interpreted as a black-and-white aerial photograph of the area. The Radiometric Information is the main information type utilized in the interpretation.
Multi-spectral Images
A multi-spectral image consist of several bands of data. For visual display, each band of the image may be displayed one band at a time as grey scale image, or in combination of three bands at a time as a color composite image.
More info about spectral reflectance signature pls refer to this
The following three images show the three bands of a multi-spectral image extracted from a SPOT multi-spectral scene at a ground resolution of 20 m. Noted that both the XS1 (green) and XS2 (red) bands look almost identical to the panchromatic image shown above. In contrast, the vegetated areas appear bright in the XS3 (near infrared) band due to high reflectance of leaves in the near infrared wavelength region.
Color Composite Images
True Color Composite
If a multi-spectral image consist of the three visual primary color bands (red, green, blue), the three bands may be continued to produce a “true color” image. In this way, the colors of the resulting color composite image resemble closely what would be observed by the human eyes.
False Color Composite
The display color assignment for any band of a multi-spectral image can be done in an entirely arbitary manner. The resulting product is known as a false color composite image. We should select the schemes more suitable for detecting certain objects in the image for our projects.
Example 1: NIR R G
A very common false colour composite scheme for displaying a SPOT multispectral image is shown below:
R = XS3 (NIR band)
G = XS2 (red band)
B = XS1 (green band)
This false colour composite scheme allows vegetation to be detected readily in the image. In this type of false colour composite images, vegetation appears in different shades of red depending on the types and conditions of the vegetation, since it has a high reflectance in the NIR band (as shown in the graph of spectral reflectance signature)
Example 2: SWIR NIR R
Another common false colour composite scheme for displaying an optical image with a short-wave infrared (SWIR) band is shown below:
R = SWIR band (SPOT4 band 4, Landsat TM band 5)
G = NIR band (SPOT4 band 3, Landsat TM band 4)
B = Red band (SPOT4 band 2, Landsat TM band 3)
Natural Color Composite
For optical images lacking one or more of the three visual primary color bands (i.e. red, green, blue), the spectral bands (some of which may not be in the visible region) may be combined in such a way that the appearance of the displayed image resembles a visible color photograph, i.e. vegetation in green, water in blue, soil in brown or grey, etc.
Noted that: Many people refer to this composite as a “true color” composite. However, this term is misleading since in many instances the color are only simulated to look similar to the “true” colors of the targets. The term “natural color” is preferred.
R = XS2
G = (3 XS1 + XS3)/4
B = (3 XS1 - XS3)/4
Vegetation Indices
Different bands of a multispectral image may be combined to accentuate the vegetated areas. One such combination is the ratio of the near-infrared band to the red band. This ratio is known as the Ratio Vegetation Index (RVI):
RVI = NIR/Red
Since vegetation has high NIR reflectance but low red reflectance, vegetated areas will have higher RVI values compared to non-vegetated aeras. Another commonly used vegetation index is the Normalised Difference Vegetation Index (NDVI) computed by:
NDVI = (NIR - Red)/(NIR + Red)
In the NDVI map shown above, the bright areas are vegetated while the nonvegetated areas (buildings, clearings, river, sea) are generally dark. Note that the trees lining the roads are clearly visible as grey linear features against the dark background.
The NDVI band may also be combined with other bands of the multispectral image to form a colour composite image which helps to discriminate different types of vegetation. One such example is shown below. In this image, the display colour assignment is:
R = XS3 (Near IR band)
G = (XS3 - XS2)/(XS3 + XS2) (NDVI band)
B = XS1 (green band)
Textual Information
Texture is an important aid in visual image intepretation, especially for high sptial resolution imagery. It is also possible to characterize the textual features numerically, and algorithmn for computer-aided automatic descriminationof different textures in an image are available.
Geometric and Contexture Information
Using geometric and contextual features for image interpretation requires some a-priori information about the area of interest. The “interpretational keys” commonly employed are: shape, size, pattern, location, and association with other familiar features.
What is NDVI
Ref: esri web help
Definition
The Normalized Difference Vegetation Index (NDVI) is a standardized index allowing you to generate an image displaying greenness (relative biomass). This index takes advantage of the contrast of the characteristics of two bands from a multispectral raster dataset—the chlorophyll pigment absorptions in the red band and the high reflectivity of plant materials in the near-infrared (NIR) band.
Application
An NDVI is often used worldwide to monitor drought, monitor and predict agricultural production, assist in predicting hazardous fire zones, and map desert encroachment. The NDVI is preferred for global vegetation monitoring because it helps to compensate for changing illumination conditions, surface slope, aspect, and other extraneous factors (Lillesand 2004).
The meaning for its certain values
The differential reflection in the red and infrared (IR) bands enables you to monitor density and intensity of green vegetation growth using the spectral reflectivity of solar radiation. Green leaves commonly show better reflection in the near-infrared wavelength range than in visible wavelength ranges. When leaves are water stressed, diseased, or dead, they become more yellow and reflect significantly less in the near-infrared range. Clouds, water, and snow show better reflection in the visible range than in the near-infrared range, while the difference is almost zero for rock and bare soil. The NDVI process creates a single-band dataset that mainly represents greenery. The negative values represent clouds, water, and snow, and values near zero represent rock and bare soil.
NDVI = arctangent((IR – R)/(IR+R))
IR = pixel values from the infrared band
R = pixel values from the red band
This produces a single-band dataset, mostly representing greenness, where any negative values are mainly generated from clouds, water, and snow, and values near zero are mainly generated from rock and bare soil. This index outputs values between -1.0 and 1.0. Very low values of NDVI (0.1 and below) correspond to barren areas of rock, sand, or snow. Moderate values represent shrub and grassland (0.2 to 0.3), while high values indicate temperate and tropical rainforests (0.6 to 0.8)
(Ref: http://earthobservatory.nasa.gov/Library/MeasuringVegetation).
Below are examples of a Landsat 7,4,3 band combination and an NDVI using a color map that highlights the agricultural activity of the area.
Even though the NDVI formula has an output of -1.0 to 1.0, the NDVI process scales this output to 0 to 255, thereby creating a one-band 8-bit output image.