参考:Create regressgan.py · starhou/One-dimensional-GAN@797e150 · GitHub(github上一个生成一维数据的代码)
深度卷积生成对抗网络 | TensorFlow Core(tensorflow官网)
先保存一下,########################
#noise_dim为生成假数据的组数,若为5,即生成5组噪声数据
#n为原始数据的组数,若为100,即为100组原始数据
#若fake_acc,real_acc为0.5左右,则说明生成的数据较好
import numpy as np
from numpy.random import rand,randn
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
def get_real_samples(n):
X1=rand(n)-0.5
本文介绍了如何使用Python实现一维生成对抗网络(GAN)。参考了GitHub上的regressgan.py代码,并结合哔哩哔哩上的教程和TensorFlow官方文档,讲解了生成器和鉴别器模型的构建过程。
最低0.47元/天 解锁文章
4万+

被折叠的 条评论
为什么被折叠?



