题目描述
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true,否则返回 false。假设输入的数组的任意两个数字都互不相同。
参考以下这颗二叉搜索树:
5
/ \
2 6
/ \
1 3
示例 1:
输入: [1,6,3,2,5]
输出: false
示例 2:
输入: [1,3,2,6,5]
输出: true
提示:
数组长度 <= 1000
思路1:递归分治
后序遍历定义: [ 左子树 | 右子树 | 根节点 ] ,即遍历顺序为 “左、右、根” 。
二叉搜索树定义: 左子树中所有节点的值 < 根节点的值;右子树中所有节点的值 > 根节点的值;其左、右子树也分别为二叉搜索树。
抓住二叉搜索树+后序遍历的特点,一共将正确的二叉搜索树的后序遍历序列分为三段:
- 第三段:数组末尾数字是其当前二叉搜索树的根节点
- 第一段:数组开始,数值一直到大于根节点数值,记录下来
- 第二段:从第一段记录下的位置开始判断,数组一直小于根节点数值,若违反则立即停止移动
根据上述特点,一次运动从数组头至尾,若违反该规则,说明不是二叉搜索树的后序遍历序列
class Solution {
public:
bool verifyPostorder(vector<int>& postorder) {
return Judge(postorder, 0, postorder.size()-1);
}
bool Judge(vector<int>& postorder, int begin, int end){
if(begin >= end) return true;
int index = begin;
while(postorder[index] < postorder[end]) index++;
int temp = index;
while(postorder[index] > postorder[end]) index++;
return index == end && Judge(postorder, temp, end-1) && Judge(postorder, begin, temp-1);
}
};
时间复杂度:O(n²)
空间复杂度:O(n)
思路2:辅助单调栈
后序遍历倒序: [ 根节点 | 右子树 | 左子树 ] 。类似 先序遍历的镜像 ,即先序遍历为 “根、左、右” 的顺序,而后序遍历的倒序为 “根、右、左” 顺序。
遍历 “后序遍历的倒序” 会多次遇到递减节点 r_i,若所有的递减节点 r_i对应的父节点 root 都满足以上条件,则可判定为二叉搜索树。
根据以上特点,考虑借助单调栈实现:
-
借助一个单调栈 stack存储值递增的节点;
-
每当遇到值递减的节点 r_i,则通过出栈来更新节点 r_i的父节点 root ;
-
每轮判断 r_i和 root 的值关系:
1. 若 r_i > root 则说明不满足二叉搜索树定义,直接返回 false 。
2. 若 r_i<root 则说明满足二叉搜索树定义,则继续遍历。
class Solution {
public boolean verifyPostorder(int[] postorder) {
Stack<Integer> stack = new Stack<>();
int root = Integer.MAX_VALUE;
for(int i = postorder.length - 1; i >= 0; i--) {
if(postorder[i] > root) return false;
while(!stack.isEmpty() && stack.peek() > postorder[i])
root = stack.pop();
stack.add(postorder[i]);
}
return true;
}
}