Bilateral Self-unbiased Learning from Biased Implicit Feedback-2022年9月之前最新的推荐系统方向论文

基于有偏内隐反馈的双边自无偏学习

Bilateral Self-unbiased Learning from Biased Implicit Feedback

论文地址+代码地址:

Search for Bilateral Self-unbiased Learning from Biased Implicit Feedback | Papers With Code

目录

问题定义 :

创新点:

背景:

 研究内容:

实验:

总结:


问题定义 :

因为观察到的反馈表示用户的点击日志,所以真实相关性和观察到的信息之间存在语义差距。更重要的是,观察到的反馈通常偏向流行项目,从而高估了流行项目的实际相关性。

现有的研究已经开发了使用反向倾向加权(IPW)或因果推理的无偏学习方法,但它们仅关注消除项目的流行度偏差

创新点:

在本文中,我们提出了一种新的无偏推荐学习模型,即双边自无偏推荐(BISER),以消除由推荐模型引起的项目暴露偏差

这是第一篇引入自逆倾向加权消除模型训练期间项目暴露偏差的论文。然后,我们采用双边学习,利用具有异构信息的基于用户和项目的自动编码器,捕获用户/项目之间的不同隐藏相关性。这一过程有助于缓解估计反向倾向得分的高方差。

BISER由两个关键组成部分组成:

i)自逆倾向加权(SIPW),以在不产生高计算成本的情况下逐渐缓解项目偏差

ii)双边无偏学习(BU),以弥补两个互补mod之间的差距

背景:

CF通常使用两种类型的用户反馈:显式反馈和隐式反馈。

显式反馈提供了比隐式反馈更丰富的关于用户偏好的信息,因为用户显式地对他们喜欢或不喜欢的项目进行评分。然而,很难从各种现实应用程序中收集明确的反馈(隐式反馈)

隐式反馈估计真实用户偏好。他们制定了一个新的损失函数,通过使用反向倾向加权(IPW)来消除项目的偏差,这在因果推理中已广泛确立此外

(IPM:采用了两个具有其他参数初始化的预训练模型,并生成了一个伪标签作为两个模型预测之间的差异。然后,他们通过训练多个模型来使用一致的预测。然而,当多个模型收敛到相似的输出时,会导致估计重叠问题。)

最近的研究引入了一个因果图,表示推荐的因果关系(以克服IPW策略的敏感性),并消除了项目受欢迎程度的影响。 然而,没有解决推荐模型引起的暴露偏差。

为了消除暴露偏差,我们提出了一种新的无偏推荐学习模型,即双边自无偏推荐器(BISER)

 研究内容:

消除推荐模型引起的曝光偏差至关重要。现有的研究主要集中在建模项目的流行度偏差。由于用户体验大多偏向于推荐的项目,我们的目标是消除推荐者模型造成的暴露偏差。

(BISER)具有两个关键组件:

自逆倾向加权(SIPW)

双边无偏学习(BU)

整体架构图:

训练流程:

 具有基于用户和项目的AE的BISER伪码。在学习过程中,它首先初始化参数 两个AE(第1行)。随后使用等式更新。

(14) 和(15)分别与来自先前迭代的模型预测(第2-5行)进行比较。在每次迭代中,它计算所有单击的用户项对的两个模型的预测。

在两个模型训练结束后,我们使用两个模型预测(第6行和第7行)获得预测矩阵^R。

实验:

总结:

双边自无偏推荐学习(BISER)有助于缓解估计反向倾向得分的高方差,解决之前的暴露偏差问题。大量实验表明,BISER在两种评估协议(MNAR-MAR和MNAR-MNAR设置)中始终优于现有的无偏推荐模型。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值