【数据库】分布式数据库

数据量不⼤时,单库单表即可⽀撑整个系统。当数据量达到⼀定规模后,则需通过分布式
数据库⽀持。
同时,单点数据库⽆法保证服务⾼可⽤,⼀旦出现宕机整个服务便 “停摆” 了
常⻅的分布式数据库实现⽅式有 “分库” 和 “分表”, 也被称作 “数据分⽚”

  1. 数据分⽚
    单表查询能⼒上限: 约为 500 万 左右
    ⽅式: 分库、分表
  2. 垂直拆分
    单表字段太多的时候会进⾏垂直拆分, 不是为了分布式存储,⽽是为了提升单表性能

在这里插入图片描述
3. ⽔平拆分
⽔平拆分既可以⽤在 “分表” 处理,也可⽤在 “分库” 处理

在这里插入图片描述

  • 按范围拆分
    优点: 构建简单, 扩容极其⽅便.
    缺点: 不能随运营发展均衡分配资源
    示例
    在这里插入图片描述
  • 按余数拆分
    优点: 能够随着运营发展均匀分配负载
    缺点: 扩容不⽅便, 扩容时投⼊⼤
    示例
    在这里插入图片描述
  1. 分布式数据库的 ID
  • 必须保证全服多机上产⽣的 ID 唯⼀
  • 常⻅全局唯⼀ ID ⽣成策略
  1. 基于存储的⾃增 ID
    可在 Redis 中为每⼀个表记录当前最新 ID 是多少, 获取下⼀个 ID 时进⾏⾃增
    优点: 思路简单, ID 连续
    缺点: 有存储依赖, ⼀旦 Redis 出现问题, 则会影响全部数据库存储
  2. 基于算法确保唯⼀
    常⻅算法有 UUID、COMB、Snowflake、ObjectID 等
    优点: 快速、⽆存储依赖
    缺点: ⼀般产⽣的 ID 数值都⽐较⼤, 某些算法的 ID 并⾮是增序
发布了126 篇原创文章 · 获赞 10 · 访问量 2363
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 点我我会动 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览