LLM
文章平均质量分 90
最美dee时光
good good study
展开
-
基于Langchain-Chatchat + chatGLM3 轻松在本地部署一个知识库
一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。该项目是一个可以实现 __完全本地化__推理的知识库增强方案, 重点解决数据安全保护,私域化部署的企业痛点。本开源方案采用Apache License,可以免费商用,无需付费。目前支持市面上主流的本地大语言模型和Embedding模型,支持开源的本地向量数据库。本项目实现原理如下图所示,过程包括加载文件->读取文本->文本分割->文本向量化->问句向量化->原创 2024-02-05 18:23:13 · 10030 阅读 · 8 评论 -
基于ChatGLM.cpp实现低成本对ChatGLM3-6B的量化加速
基于ggml的纯C++实现,工作方式与llama.cpp相同。通过 int4/int8 量化、优化的 KV 缓存和并行计算加速内存高效的 CPU 推理。具有打字机效果的流式生成。Python 绑定、Web demo、API server和更多可能性。硬件:x86/arm CPU、NVIDIA GPU、Apple Silicon GPU平台:Linux、MacOS、Windows。原创 2024-02-04 22:06:48 · 3712 阅读 · 1 评论 -
如何在本地部署chatGLM3
ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。更强大的基础模型。更完整的功能支持。更全面的开源序列。详细介绍参考官方README介绍。basic_demo: 基础demo(cli_demo和web_demo)composite_demo : 综合demo(聊天、工具和代码解释器)finetune_demo:基础模型微调model:这个事自己创建的,将模型文件放在此目录下openai_api_demo: openapi的api接口demo。原创 2024-02-04 18:19:45 · 2319 阅读 · 0 评论 -
基于MacBook Pro M1芯片运行chatglm2-6b大模型
更强大的性能。更长的上下文。更高效的推理。更开放的协议。详细介绍参考官方README介绍。原创 2024-01-22 21:35:06 · 2020 阅读 · 2 评论