PIE获取中国植被生物量分布图集

PIE获取中国植被生物量分布图集

中国植被生物量分布图集

中国植被生物量分布图集简介这里是引用简介:中国植被生物量分布图集由航天宏图实验室提供,利用MODIS地表反射率数据和植被指数(MCD43A4、MCD12Q1),与美国农业部FIA项目提供的地上生物量数据结合进行随机森林机器学习,训练得到各种植被类型的地上生物量估算模型。模型的总体预测精度为R2=0.72,RMSE=33.90 Mg/ha。将模型应用到中国地区,产生了覆盖全国的500米分辨率的年度植被地上生物量数据和相关图集。对森林火灾前后受灾区域的生物量分别进行估算和变化监测,能够有效评估火灾带来的植被生物量的损失,为火灾灾后评估提供有效的支撑。
时间范围:2001年-2020年
范围:全国
波段:B1
分辨率:500m

下面是个人使用的一些代码,获取感兴趣区域的数据并保存到PIE资源云盘(TIFF格式),使用时可根据自己的需求进行改动,这里简单演示。

代码部分

//这块是使用区域进行筛选(如:河南省)
//var roi = pie.FeatureCollection("NGCC/CHINA_PROVINCE_BOUNDARY")
//    .filter(pie.Filter.eq("name","河南省"))
//    .first()
//    .geometry();

//有研究区域的的矢量边界,打包上传至PIE
var roi = pie.FeatureCollection('user/文件路径及名称').first().geometry();//上传PIE自己的ROI,加载进来

Map.addLayer(roi, {color:'0045FF',width:2,fillColor:'00FFFF00'}, 'ROI(图层名称)');//展示矢量边界
Map.centerObject(roi,10);

var img = pie.ImageCollection("EMDO/CHINA_AGB")//获取中国植被生物量分布图集
             .filterDate("2014-01-01","2014-12-31")//数据时间(2001-2020只修改年份即可)
             .first()
             .select("B1")
print("images:",img);

//设置图层显示参数并加载
var visParam = {
    min: 0,
    max: 200,
    palette:'00007F,002AFF,00D4FF,7FFF7F,FFD400,FF2A00,7F0000',
};

Map.addLayer(img,visParam,"img")//图像加载
Map.centerObject(img,2)

//将数据保存至云盘,可下载至本地
Export.imageToCloud({
  image:img,//保存的数据
  description: 'image',//下载任务名称
  assetId:'IMAGE',//保存图像的名称
  region:roi,//将数据使用ROI掩膜进行裁剪
  scale:500,//分辨率
})

结果展示

1、加载数据展示
在这里插入图片描述
2、运行结果(数据信息)
在这里插入图片描述
3、任务执行下载
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4、云盘下载
在这里插入图片描述
在这里插入图片描述
5、使用ArcGIS打开并查看
在这里插入图片描述
在这里插入图片描述

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值