民航客运量变化趋势的多元线性回归模型--基于R(附R程序及讲解)

本文使用R语言分析民航客运量的变化趋势,通过建立多元线性回归模型,探讨旅客运输量、入境游客等因素的影响。经过逐步回归选择最优模型,并进行回归诊断,发现异常点,通过残差分析验证模型假设。最终得出显著的回归方程,并进行预测分析。
摘要由CSDN通过智能技术生成

目录

建立回归方程 

用逐步回归进行变量选择

回归诊断

回归诊断:一般的方法

回归预测

附录

全部R程序:

 题目数据:


       为研究我国民航客运量的变化趋势及其成因,以民航客运量为因变量y(万人),旅客运输量x_{1}(万人),入境游客x_{2}(万人),外国人入境游客x_{3}(万人),国内居民出境人数x_{4}(万人)和国内游客x_{5}(万人)为主要解释变量,建立多元线性回归模型并进行分析.(数据文件在文末)。

资料来源:中华人民共和国国家统计局年度数据,http://www.stats.gov.cn/tjsj/. 

图1  民航客运量多因素分析数据

建立回归方程 

      根据ex2.3.csv的数据,建立y关于 x_{1}x_{2}x_{3}x_{4}x_{5}的线性回归方程并对方程和回归系数进行显著性检验,R程序如下:

d2.3<-read.csv("ex2.3.csv",header = T) #将ex2.3.csv数据读入到d2.3中
lm.exam<-lm(y~x1+x2+x3+x4+x5,data=d2.3) #建立y关于x1,x2,x3,x4和x5的线性回归方程,数据为d2.3
summary(lm.exam)

       运行结果如下:

       从以上结果可以看出,回归方程的F值为1413,相应的P值为2.2e-16,说明回归方程是显著的,但t对应的P值却显示:常数项和变量x_{5}是显著的,而变量 x_{1}x_{2}x_{3}x_{4}不显著。

用逐步回归进行变量选择

      为了获得“最优”回归方程,采用逐步回归方法建立 y关于 x_{1}x_{2}x_{3}x_{4}x_{5}的线性回归方程并对方程和回归系数进行显著性检验,R程序如下:

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值