目录
为研究我国民航客运量的变化趋势及其成因,以民航客运量为因变量(万人),旅客运输量(万人),入境游客(万人),外国人入境游客(万人),国内居民出境人数(万人)和国内游客(万人)为主要解释变量,建立多元线性回归模型并进行分析.(数据文件在文末)。
资料来源:中华人民共和国国家统计局年度数据,http://www.stats.gov.cn/tjsj/.
图1 民航客运量多因素分析数据
建立回归方程
根据ex2.3.csv的数据,建立关于 ,,,和的线性回归方程并对方程和回归系数进行显著性检验,R程序如下:
d2.3<-read.csv("ex2.3.csv",header = T) #将ex2.3.csv数据读入到d2.3中
lm.exam<-lm(y~x1+x2+x3+x4+x5,data=d2.3) #建立y关于x1,x2,x3,x4和x5的线性回归方程,数据为d2.3
summary(lm.exam)
运行结果如下:
从以上结果可以看出,回归方程的F值为1413,相应的P值为2.2e-16,说明回归方程是显著的,但t对应的P值却显示:常数项和变量是显著的,而变量 ,,和不显著。
用逐步回归进行变量选择
为了获得“最优”回归方程,采用逐步回归方法建立 关于 ,,,和的线性回归方程并对方程和回归系数进行显著性检验,R程序如下:
<