分享一套latex高中数学试卷模板

\documentclass[12pt]{article}
\usepackage{amsmath,amssymb,geometry}
\usepackage{fontspec}
\usepackage{ctex}
\usepackage{tikz}
\usepackage{tikz-3dplot}
\usetikzlibrary{3d}
\geometry{a4paper, margin=1.2in}
\title{2025年普通高等学校招生全国统一考试\\数学模拟试题}
\date{\today}
\author{买\( Luckin\  Coffee \)也用券}
\begin{document}
	\maketitle
	\section*{第I卷(选择题,共60分)}
	\begin{enumerate}
		\item 已知集合$A=\{x \in \mathbb{Z} \mid -2 < x \leq 3\}$,$B=\{x \mid x^2 \leq 4\}$,则$A \cap B$的元素个数为\ (\quad)
		\par \textbf{ } A. 3 \qquad B. 4 \qquad C. 5 \qquad D. 6
		
		\item 复数$z=\frac{2+i}{1-3i}$的虚部为\ (\quad)
		\par \textbf{ } A. $-\frac{1}{10}$ \qquad B. $\frac{7}{10}$ \qquad C. $\frac{1}{2}$ \qquad D. $\frac{9}{10}$
		
		\item 函数$f(x)=2\sin(3x-\frac{\pi}{4})$的图像关于直线对称的是\ (\quad)
		\par \textbf{ } A. $x=\frac{\pi}{12}$ \qquad B. $x=\frac{\pi}{6}$ \qquad C. $x=\frac{\pi}{4}$ \qquad D. $x=\frac{\pi}{3}$
		
		\item $(x^2-\frac{2}{x})^6$的展开式中常数项为\ (\quad)
		\par \textbf{ } A. 160 \qquad B. -160 \qquad C. 240 \qquad D. -240
		
		\item 已知等差数列$\{a_n\}$前$n$项和为$S_n$,若$S_5=25$,$a_4=7$,则$a_1=$\ (\quad)
		\par \textbf{ } A. 1 \qquad B. 2 \qquad C. 3 \qquad D. 4
		
		\item 甲乙两人下棋,每局甲获胜概率为0.6,先胜2局者赢得比赛,则甲赢得比赛的概率为\ (\quad)
		\par \textbf{ } A. 0.6 \qquad B. 0.648 \qquad C. 0.72 \qquad D. 0.84
		
		\item 已知函数$f(x)=\ln(x+\sqrt{x^2+1})+e^x-e^{-x}$,则下列说法正确的是\ (\quad)
		\par \textbf{ } A. 奇函数 \qquad B. 关于(0,1)对称 \qquad C. 在R上递减 \qquad D. 值域为[2,+)
		
		\item 正四棱锥底面边长为2,侧棱长为3,则该四棱锥体积为\ (\quad)
		\par \textbf{ } A. $\frac{4\sqrt{7}}{3}$ \qquad B. $\frac{8\sqrt{7}}{3}$ \qquad C. $2\sqrt{7}$ \qquad D. $\frac{10\sqrt{7}}{3}$
		
		\item 已知向量$\mathbf{a}=(1,2)$,$\mathbf{b}=(m,1)$,若$\mathbf{a}$与$\mathbf{a}-2\mathbf{b}$垂直,则$m=$\ (\quad)
		\par \textbf{ } A. $-\frac{1}{2}$ \qquad B. $\frac{1}{2}$ \qquad C. $-\frac{3}{2}$ \qquad D. $\frac{3}{2}$
		
		\item 椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,直线$x=2a$与C交于A,B两点,若$\triangle ABF$为等边三角形,则C的离心率为\ (\quad)
		\par \textbf{ } A. $\frac{1}{2}$ \qquad B. $\frac{\sqrt{3}}{2}$ \qquad C. $\frac{\sqrt{3}}{3}$ \qquad D. $\frac{\sqrt{2}}{2}$q
		
		\item 已知函数$f(x)=\begin{cases}
			x^2+1, & x \leq 1 \\
			\ln x +a, & x >1
		\end{cases}$ 在$x=1$处可导,则$a=$\ (\quad)
		\par \textbf{ } A. 0 \qquad B. 1 \qquad C. 2 \qquad D. 3
		
		\item 设$a=3^{0.2}$,$b=\log_3 2$,$c=\cos\frac{\pi}{3}$,则\ (\quad)
		\par \textbf{ } A. $a>b>c$ \qquad B. $a>c>b$ \qquad C. $b>a>c$ \qquad D. $c>a>b$
	\end{enumerate}
	
	\section*{第II卷(非选择题,共90分)}
	
	\subsection*{填空题(每题5分,共20分)}
	\begin{enumerate}
		\addtocounter{enumi}{12}
		
		\item 已知实数$x,y$满足$\begin{cases} x+y \geq 2 \\ x-y \leq 1 \\ y \leq 2 \end{cases}$,则$z=2x+y$的最小值为\underline{\qquad}
		
		\item $\triangle ABC$中,$\sin A:\sin B:\sin C=3:5:7$,则最大角的余弦值为\underline{\qquad}
		
		\item 已知向量$|\mathbf{a}|=2$,$|\mathbf{b}|=3$,$|\mathbf{a}+\mathbf{b}|=\sqrt{19}$,则$|\mathbf{a}-2\mathbf{b}|=$\underline{\qquad}
		
		\item 抛物线$y^2=4x$的焦点为F,过F作倾斜角为60°的直线交抛物线于A,B两点,则$|AB|=$\underline{\qquad}
	\end{enumerate}
	
	\subsection*{解答题(共70分)}
	
	\begin{enumerate}
		\addtocounter{enumi}{16}
		
		\item (12分)已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}=2a_n+3$,$b_n=a_n+3$。
		\begin{enumerate}
			\item 证明$\{b_n\}$是等比数列
			\item 求$\{a_n\}$的通项公式
			\item 求数列$\{a_n\}$的前$n$项和$S_n$
		\end{enumerate}
		
		\item (12分)如图,四棱锥\(P-ABCD\)中,底面\(ABCD\)为矩形,\(PA\perp\)平面\(ABCD\),\(PA=AB=2\),\(AD=4\),\(M\)为\(PD\)中点。
		\begin{enumerate}
			\item 证明:\(PB\parallel\)平面\(AMC\)
			\item 求二面角\(M-AC-D\)的余弦值
			\item 求点\(B\)到平面\(AMC\)的距离
		\end{enumerate}
		\begin{figure}[htbp]
			\centering % 图片居中
			\tdplotsetmaincoords{60}{110} % 设置视角角度
			\begin{tikzpicture}[scale=1.5, tdplot_main_coords]
				
				% 定义坐标点
				\coordinate (A) at (0,0,0);
				\coordinate (B) at (2,0,0);
				\coordinate (D) at (0,4,0);
				\coordinate (C) at (2,4,0);
				\coordinate (P) at (0,0,2);
				\coordinate (M) at (0,2,1); % PD的中点
				
				% 绘制底面ABCD(实线)
				\draw[thick] (A) -- (B) -- (C) -- (D) -- cycle;
				
				% 绘制四棱锥侧棱
				\draw[thick] (P) -- (A);
				\draw[thick] (P) -- (B);
				\draw[thick] (P) -- (C);
				\draw[dashed] (P) -- (D); % PD用虚线表示被遮挡部分
				
				% 绘制中点M并添加标签
				\filldraw (M) circle (1.5pt) node[above left] {M};
				
				% 添加各顶点标签
				\node[below] at (A) {A};
				\node[below] at (B) {B};
				\node[right] at (C) {C};
				\node[above] at (D) {D};
				\node[left] at (P) {P};
			\end{tikzpicture}
			\caption{-1 四棱锥示意图} % 自定义标题
			\label{fig:pyramid} % 用于交叉引用
		\end{figure}
		\item (12分)某工厂生产甲、乙两种产品,质量按测试指标分为一、二、三等:
		\begin{center}
			\begin{tabular}{|c|c|c|c|}
				\hline
				产品 & 一等品率 & 二等品率 & 三等品率 \\
				\hline
				甲 & 60\% & 30\% & 10\% \\
				乙 & 50\% & 40\% & 10\% \\
				\hline
			\end{tabular}
		\end{center}
		\begin{enumerate}
			\item 从甲产品中随机抽取3件,求恰好2件为一等品的概率
			\item 现从甲、乙产品中各取1件,求至少有一件一等品的概率
			\item 若抽到一等品得5分,二等品得3分,三等品得0分,记X为抽取1件甲和1件乙的总得分,求\(X\)的分布列和期望
		\end{enumerate}
		
		\item (12分)在$\triangle ABC$中,角\(A\),\(B\),\(C\)对边分别为\(a\),\(b\),\(c\),已知$\cos B+\sqrt{3}\sin B=2$,且$a=2$。
		\begin{enumerate}
			\item 求角\(B\)的大小
			\item 若$\triangle ABC$的面积为$\sqrt{3}$,求\(b\)的值
			\item 求$\triangle ABC$周长的最大值
		\end{enumerate}
		
		\item (12分)已知函数$f(x)=e^x-ax^2$。
		\begin{enumerate}
			\item 讨论$f(x)$的单调性
			\item 当$a=1$时,证明:$f(x) \geq \cos x$在$[-π, +)$上恒成立
			\item 若$f(x)$有两个极值点$x_1,x_2$,求证:$x_1+x_2 < 2\ln(2a)$
		\end{enumerate}
		
		\item (10分)已知双曲线\(C\):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为\(F\),过\(F\)的直线\(l\)与\(C\)交于\(M\),\(N\)两点,且$\overrightarrow{MF}=3\overrightarrow{FN}$。
		\begin{enumerate}
			\item 求双曲线\(C\)的离心率
			\item 当$a=2$时,是否存在直线\(l\)使得$\angle MON=90^\circ$(\(O\)为原点)?若存在,求\(l\)的方程;若不存在说明理由
		\end{enumerate}
	\end{enumerate}
\end{document}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值