24年配置CUDA12.4,Pytorch2.5.1,CUDAnn9.5运行环境

        没什么好介绍的,直接说了。

下载

首先打开命令行,输入代码查看显卡最高支持的cuda版本,下载的版本不要高于该版本

nvidia-smi

PyTorch 插件这个是PyTorch下载地址,就按照我这么选CUDA版本就选最新的,看好绿框里的CUDA版本12.4,后面要用。

确认好CUDA版本我们进入这个网站。

CUDA 工具包 - 免费工具和培训 |NVIDIA 开发人员 点击下载

可以看到里面有很多工具,这次要用的是CUDA Toolkit。

点击下载,会发现他,他不是12.4的,我们要找12.4版本的,他的版本要和PyTorch对应,点绿框的链接,选择历史版本

找到12.4.0

直接开始下载

这里可以看一下版本说明 发行说明 — NVIDIA cuDNN ,这里先选择9.5.0不选择9.5.1,下载历史版本的方法还是一样。

下面的网址是cuda对应cudann版本,选择cuda12对应的版本安装。

Index of /compute/cudnn/redist/cudnn/windows-x86_64

安装

下载完了,开始安装

我推荐如果你的电脑C盘分配的空间比较大比如我分配了500G,那就把这些系统环境直接装到默认的C盘就好了,比较省心。

复制pip命令到命令提示符,以管理员身份运行。

下载要很久,还有可能下载到一半就失败,多试两次。他下载的过程会暂停,注意一下,如果是一直在闪才是正在下载,暂停了就点一下再点一下回车继续。

在安装过程中可能会有一个黄色警告,这个警告信息的意思是,您下载并安装了 torchtorchvision 和 torchaudio,但是一些脚本文件被安装在了 C:\Users\wangy\AppData\Roaming\Python\Python312\Scripts 目录下,而这个目录没有被加入到系统的 PATH 环境变量中。因此,当您在命令行中直接调用这些脚本(如 torchrun.exe)时,系统可能找不到这些命令。

然后开始安装cuda,选自定义安装

如果你已经装了显卡驱动下面的三个选项可以取消勾选,红框里的内容是安装失败事故频发区域,和VS相关,你可以安装vs2019后再来单独安装勾选这些条目。

强烈推荐把环境配置安装在默认的C盘,可以省去很多麻烦

如果安装失败,查看导致安装失败的插件,一般来说就是Nsight控件了,取消掉再重新安装再去单独安装相应组件,这里是网址  NVIDIA Nsight Integration | NVIDIA Developer

单独安装成功

命令行输入代码,可以看到安装的cuda版本

nvcc -V

开始安装cudann,首先解压

复制所有文件到cuda安装目录。

然后进入环境变量

参考我的路径,添加四个路径到环境变量

完成后继续打开命令行,输入代码

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\extras\demo_suite

分别执行bandwidthTest.exe和deviceQuery.exe

两个都为PASS则为安装成功

### 关于 PyTorch 2.5.1CUDA 12.8 的支持 目前可获得的信息表明,PyTorch 官方发布的版本与其兼容的 CUDA 版本之间存在严格的对应关系[^3]。根据已知的内容,PyTorch 的最新稳定版通常会适配较新的 CUDA 版本,但具体到 PyTorch 2.5.1CUDA 12.8 的组合,尚未有官方文档明确指出其兼容性。 在引用中提到,PyTorch 的版本选择需依据特定 CUDA 版本来进行匹配,例如 CUDA 12.4 对应的是 torch=2.4 和 torchvision=0.19。然而,在当前时间点,CUDA Toolkit 已更新至 12.8 版本[^1],而 PyTorch 是否已经发布针对此版本的支持仍不确定。 为了验证这一假设,建议访问 PyTorch 的官方安装页面或查看 NVIDIA 开发者网站上的 TensorRT 支持矩阵以确认具体的依赖关系。如果未找到显式的说明,则可能意味着 PyTorch 当前并不完全支持 CUDA 12.8 或仍在开发阶段。 以下是基于上述分析的一个推荐实践方法: ```bash # 创建一个新的 Anaconda 虚拟环境并激活它 conda create -n pytorch_cuda python=3.10 conda activate pytorch_cuda # 尝试安装指定版本的 PyTorch (假定支持) pip install torch==2.5.1+cu128 torchvision==0.19.0+cu128 torchaudio==2.0.0 --index-url https://download.pytorch.org/whl/cu128 ``` 需要注意的是,以上命令中的 `torch==2.5.1+cu128` 是推测性的写法,实际可用性取决于 PyTorch 官方是否提供了该预编译二进制文件。 #### 结论 由于缺乏直接证据证明 PyTorch 2.5.1 明确支持 CUDA 12.8,因此无法断言两者的兼容性。用户应当密切关注 PyTorch 和 NVIDIA 的官方公告来获取最准确的结果。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值