MyBatis原生批量插入的坑与解决方案!

b11b3d4f65cf567f755b53e3b1187e83.png

作者 | 王磊

来源 | Java中文社群(ID:javacn666)

转载请联系授权(微信ID:GG_Stone)

前面的文章咱们讲了 MyBatis 批量插入的 3 种方法:循环单次插入、MyBatis Plus 批量插入、MyBatis 原生批量插入,详情请点击《MyBatis 批量插入数据的 3 种方法!》

但之前的文章也有不完美之处,原因在于:使用 「循环单次插入」的性能太低,使用「MyBatis Plus 批量插入」性能还行,但要额外的引入 MyBatis Plus 框架,使用「MyBatis 原生批量插入」性能最好,但在插入大量数据时会导致程序报错,那么,今天咱们就会提供一个更优的解决方案。

原生批量插入的“坑”

首先,我们来看一下 MyBatis 原生批量插入中的坑,当我们批量插入 10 万条数据时,实现代码如下:

import com.example.demo.model.User;
import com.example.demo.service.impl.UserServiceImpl;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.ArrayList;
import java.util.List;

@SpringBootTest
class UserControllerTest {

    // 最大循环次数
    private static final int MAXCOUNT = 100000;

    @Autowired
    private UserServiceImpl userService;
    
    /**
     * 原生自己拼接 SQL,批量插入
     */
    @Test
    void saveBatchByNative() {
        long stime = System.currentTimeMillis(); // 统计开始时间
        List<User> list = new ArrayList<>();
        for (int i = 0; i < MAXCOUNT; i++) {
            User user = new User();
            user.setName("test:" + i);
            user.setPassword("123456");
            list.add(user);
        }
        // 批量插入
        userService.saveBatchByNative(list);
        long etime = System.currentTimeMillis(); // 统计结束时间
        System.out.println("执行时间:" + (etime - stime));
    }
}

核心文件 UserMapper.xml 中的实现代码如下:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.example.demo.mapper.UserMapper">
    <insert id="saveBatchByNative">
        INSERT INTO `USER`(`NAME`,`PASSWORD`) VALUES
        <foreach collection="list" separator="," item="item">
            (#{item.name},#{item.password})
        </foreach>
    </insert>

</mapper>

当我们开心地运行以上程序时,就出现了以下的一幕:

9deec3f120ba16d7d2a856f900ed5765.png沃,程序竟然报错了!

这是因为使用 MyBatis 原生批量插入拼接的插入 SQL 大小是 4.56M,而默认情况下 MySQL 可以执行的最大 SQL 为 4M,那么在程序执行时就会报错了。

解决方案

以上的问题就是因为批量插入时拼接的 SQL 文件太大了,所以导致 MySQL 的执行报错了。那么我们第一时间想到的解决方案就是将大文件分成 N 个小文件,这样就不会因为 SQL 太大而导致执行报错了。也就是说,我们可以将待插入的 List 集合分隔为多个小 List 来执行批量插入的操作,而这个操作过程就叫做 List 分片。

有了处理思路之后,接下来就是实操了,那如何对集合进行分片操作呢?

分片操作的实现方式有很多种,这个我们后文再讲,接下来我们使用最简单的方式,也就是 Google 提供的 Guava 框架来实现分片的功能。

分片 Demo 实战

要实现分片功能,第一步我们先要添加 Guava 框架的支持,在 pom.xml 中添加以下引用:

<!-- google guava 工具类 -->
<!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
<dependency>
  <groupId>com.google.guava</groupId>
  <artifactId>guava</artifactId>
  <version>31.0.1-jre</version>
</dependency>

接下来我们写一个小小的 demo,将以下 7 个人名分为 3 组(每组最多 3 个),实现代码如下:

import com.google.common.collect.Lists;

import java.util.Arrays;
import java.util.List;

/**
 * Guava 分片
 */
public class PartitionByGuavaExample {
    // 原集合
    private static final List<String> OLD_LIST = Arrays.asList(
            "唐僧,悟空,八戒,沙僧,曹操,刘备,孙权".split(","));

    public static void main(String[] args) {
        // 集合分片
        List<List<String>> newList = Lists.partition(OLD_LIST, 3);
        // 打印分片集合
        newList.forEach(i -> {
            System.out.println("集合长度:" + i.size());
        });
    }
}

以上程序的执行结果如下:

865b525f95af7d0f7000ad8a82327343.png从上述结果可以看出,我们只需要使用 Guava 提供的 Lists.partition 方法就可以很轻松的将一个集合进行分片了。

原生批量插入分片实现

那接下来,就是改造我们的 MyBatis 批量插入代码了,具体实现如下:

@Test
void saveBatchByNativePartition() {
    long stime = System.currentTimeMillis(); // 统计开始时间
    List<User> list = new ArrayList<>();
    // 构建插入数据
    for (int i = 0; i < MAXCOUNT; i++) {
        User user = new User();
        user.setName("test:" + i);
        user.setPassword("123456");
        list.add(user);
    }
    // 分片批量插入
    int count = (int) Math.ceil(MAXCOUNT / 1000.0); // 分为 n 份,每份 1000 条
    List<List<User>> listPartition = Lists.partition(list, count);
    // 分片批量插入
    for (List<User> item : listPartition) {
        userService.saveBatchByNative(item);
    }
    long etime = System.currentTimeMillis(); // 统计结束时间
    System.out.println("执行时间:" + (etime - stime));
}

执行以上程序,最终的执行结果如下:

1ebdcff88438939f438c5fe76d36bad2.png

从上图可以看出,之前批量插入时的异常报错不见了,并且此实现方式的执行效率竟比 MyBatis Plus 的批量插入的执行效率要高,MyBatis Plus 批量插入 10W 条数据的执行时间如下:

609cd8ccd52b95c0e6ba03ec237f86b3.png

总结

本文我们演示了 MyBatis 原生批量插入时的问题:可能会因为插入的数据太多从而导致运行失败,我们可以通过分片的方式来解决此问题,分片批量插入的实现步骤如下:

  1. 计算出分片的数量(分为 N 批);

  2. 使用 Lists.partition 方法将集合进行分片(分为 N 个集合);

  3. 循环将分片的集合进行批量插入的操作。

推荐阅读:

读懂Redis源码,我总结了这7点心得

缓存和数据库一致性问题,看这篇就够了

搞懂异地多活,看这篇就够了

腾讯二面:Redis 事务支持 ACID 么?

聊聊分布式锁——Redis和Redisson的方式

看一遍就理解:MVCC原理详解

欢迎关注微信公众号:互联网全栈架构,收取更多有价值的信息。

40fcdfd200cdff89d908711b6ff584e8.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值