本质上是预测回答的对错,是二元分类的预测问题
Context-Aware Attentive Knowledge Tracing 2020
《情境感知的注意力知识追踪》,注意力知识追踪,情感感知。通过建立问题和回答的上下文感知(情感感知)表示,使用单调的注意机制来总结过去的学习者在正确的时间尺度上的表现。
注意力机制:根据权重的不同,将有限的资源用来处理更重要的数据。
1.本文通过指数衰减(exponential decay)还有情感感知的相对距离的度量(context-aware relative distance measure)来计算注意力的权重。所得到的结果也可以达到比目前的KT方法优秀(最高AUC提高6%)。
2.近30年所有的KD问题都基于两个共同的假设:①一个学习者过去的表现可以用一组变量来概括,这组变量表示他们对一组概念/技能/知识点上的潜在的知识水平;②一个学习者的未来表现可以用他们当前的潜在概念知识水平来预测。(废话)
3.self-attentive knowledge tracing (SAKT)是第一次提出注意力机制在KT,但性能不如DKT和DKVMN(dynamic key-value memory networks ),注意机制比递归和基于记忆的神经网络更灵活,并在自然语言处理任务中表现出优异的性能。
4.数据集:Statics2011、Assist2009、2015、2017(和我那个程序的数据集一样,我多了kddcup2010和synthetic)
在过去的十年中,