题意:
相减再取再绝对值再累乘,取模,
比赛思路:
昨晚大致看了一下,n是2e5的范围,好大!要写nlogn的算法?这还能怎么写?但是暴力n^2铁超时啊,算了,困了不写了。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[200500],n,m,ans=1;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
ll n,m;
cin>>n>>m;
for(int i=0;i<n;i++) cin>>a[i];
if(n>m){
cout<<0<<endl;
}else{
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
ans=(ans*abs(a[i]-a[j]))%m;
}
}
cout<<ans<<endl;
}
return 0;
}
题解:
结果这道题还挺有意思,长知识了。
因为都是对m取模,所以,余数只有可能在[0,m)的范围内,而如果n>m,则就意味着必定有至少1个余数出现了两次或以上。如果一个余数,出现了两次以上,则这两个数相减,肯定是m的倍数。即累乘乘积必定为0。所以做判断,当n>m时,直接输出0就好了。同时m的值最到也就到1000;也就是说最多循环也就是1000^2,很轻松。