- 博客(8)
- 收藏
- 关注
原创 如何解决no model named ‘xxxxxxxx‘问题
解决问题:no model named ‘xxxxx’这个xxxxx特指自己写的py文件在另一个python文件调用的过程中找不到相应的模块总结方法:一:用文件名帮助检索在这里插入代码片提示:这里可以添加计划学习的时间例如:1、 周一至周五晚上 7 点—晚上9点2、 周六上午 9 点-上午 11 点3、 周日下午 3 点-下午 6 点二:sys提示:这里统计学习计划的总量例如:1、 技术笔记 2 遍2、CSDN 技术博客 3 篇3、 学习的 vlog 视频 1 个三
2020-09-08 20:44:33 1857
原创 对于深度学习中训练集(train set)验证集(validation set)和测试集(test set)的理解
实验中网络训练集,测试集,验证集的功能本文用两个流程图来解释如何更好的区分训练集验证集以及测试集的功能文章目录实验中网络训练集,测试集,验证集的功能前言一、训练集验证集和测试集的理论解释二、流程图解释1.在论文[Convolutional Neural Networks for Recognition of Lymphoblast Cell Images](https://www.hindawi.com/journals/cin/2019/7519603/)中的流程图2.实际应用中总结前言在深
2020-09-08 09:59:52 9195 1
转载 Batch Normalization原理及其反向传播
Batch Normalization的过程及其实现Batch Normalization可以解决深度神经网络中输入不稳定的问题,并且使得神经网络的梯度大小相对固定。BN的好处:1、提高训练速度,使收敛速度加快。2、增加分类效果。(类似于Dropout的一种防止过拟合的正则化表达式,所以不用Dropout也能达到相当的效果)3、调参的过程也变得简单,对于初始化要求也提示:本篇文章为了自己学习使用,也分享给大家,参考公众号极市平台作者丨风行天上@知乎来源丨https://zhuanlan.z
2020-09-01 16:11:01 527
原创 深度理解GRUU-Net
**用于细胞分割的集成卷积和门控递归神经网络GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation**近些年来,细胞分割的主要范式是使用卷积神经网络,较少使用递归神经网络。本文的创新性网络结构是结合了卷积神经网络和门控递归神经网络。虽说本篇论文的名字叫做GR...
2020-05-08 12:15:52 884
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人