数学建模与MATLAB–整数规划
文章目录
一、什么是整数规划?
1、整数规划定义
规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,
变量限制为整数,则称为整数线性规划。
注意:目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。
2、整数规划分类

3、整数规划的特点

二、整数规划的问题实例
生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题

三、整数规划求解方法
1、分支定界法
求解范围:纯或混合整数线性规划
思路:
对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。这就是分枝定界法的主要思路。
求解过程:



2、割平面法
求解范围:纯或混合整数线性规划<

本文介绍了整数规划的定义、分类和特点,包括分支定界法、割平面法、隐枚举法、匈牙利法和蒙特卡罗法等求解方法。并以0-1整数规划和非线性整数规划为例,展示了MATLAB求解过程和代码。同时,建议使用Lingo等专业软件以提高计算效率。
最低0.47元/天 解锁文章
5293

被折叠的 条评论
为什么被折叠?



