2.2数学建模与MATLAB--整数规划

本文介绍了整数规划的定义、分类和特点,包括分支定界法、割平面法、隐枚举法、匈牙利法和蒙特卡罗法等求解方法。并以0-1整数规划和非线性整数规划为例,展示了MATLAB求解过程和代码。同时,建议使用Lingo等专业软件以提高计算效率。

数学建模与MATLAB–整数规划

一、什么是整数规划?

1、整数规划定义

规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,
变量限制为整数,则称为整数线性规划。
注意:目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。

2、整数规划分类

在这里插入图片描述

3、整数规划的特点

在这里插入图片描述

二、整数规划的问题实例

生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题
在这里插入图片描述

三、整数规划求解方法

1、分支定界法

求解范围:纯或混合整数线性规划
思路:
对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。这就是分枝定界法的主要思路。
求解过程:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、割平面法

求解范围:纯或混合整数线性规划<

以下是用C语言实现01背包问题的代码,可以输出optimal value和所有的optimal solution: ```c #include <stdio.h> #include <stdlib.h> int n, W, w[100], v[100]; int opt[101][1001] = {0}; // opt[i][j]表示前i个物品,容量为j时的最优值 int sol[101][1001] = {0}; // sol[i][j]表示前i个物品,容量为j时的最优方案数 int max(int a, int b) { return a > b ? a : b; } void knapsack() { for (int i=1; i<=n; i++) { for (int j=1; j<=W; j++) { if (w[i] > j) { opt[i][j] = opt[i-1][j]; } else { opt[i][j] = max(opt[i-1][j], opt[i-1][j-w[i]] + v[i]); } } } for (int i=1; i<=n; i++) { for (int j=1; j<=W; j++) { if (opt[i][j] == opt[i-1][j]) { sol[i][j] += sol[i-1][j]; } if (j >= w[i] && opt[i][j] == opt[i-1][j-w[i]] + v[i]) { sol[i][j] += sol[i-1][j-w[i]]; } if (opt[i][j] == opt[n][W]) { printf("Optimal solution: "); for (int k=1; k<=i; k++) { if (j >= w[k] && opt[i][j] == opt[i-1][j-w[k]] + v[k]) { printf("%d ", k); } } printf("\n"); } } } } int main() { printf("Enter the number of items and the capacity of the knapsack: "); scanf("%d %d", &n, &W); printf("Enter the weights and values of the items:\n"); for (int i=1; i<=n; i++) { scanf("%d %d", &w[i], &v[i]); sol[i][0] = 1; } knapsack(); printf("Optimal value: %d\n", opt[n][W]); return 0; } ``` 在上面的代码中,我们使用了两个二维数组opt和sol来分别存储最优值和最优方案数。在计算opt数组时,我们使用了动态规划的思想,通过填表来求解。在计算sol数组时,我们沿用了opt数组的计算方法,在计算过程中,如果当前位置的值等于opt[n][W],则说明找到了一个optimal solution,我们就可以输出对应的物品编号。最后再输出optimal value即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值