- 博客(209)
- 资源 (75)
- 收藏
- 关注
原创 Pyecharts之图表组合与布局优化
在实际应用中,我们可以根据数据的特点和分析需求,灵活选择使用 Tab 组件、Page 组件或 Timeline 组件。Tab 组件适合用户切换查看不同类型的图表,Page 组件适合将多个图表排列在一起展示,而 Timeline 组件则适用于展示数据的时间序列变化。你可以根据需要调整每个图表的样式、数据和颜色,以满足不同的可视化需求。
2025-01-25 21:19:58
1309
原创 Pyecharts之词云图、面积图与堆叠面积图
通过这三个示例,我们可以看到 Pyecharts 在数据可视化方面的强大功能,无论是词云图对文本数据的精彩展示,还是面积图和堆叠面积图对数据趋势和分层关系的呈现,都为我们提供了多样化的数据展示手段。
2025-01-25 21:02:18
462
原创 Pyecharts之地图图表的强大功能
在实际使用中,GEO 地图添加自定义坐标是一个很有用的功能。# 假设我们要添加一个自定义地点的坐标,例如 "自定义地点"geo.add_coordinate("自定义地点", 120.00, 30.00)# 为自定义地点添加数据geo.add("自定义数据系列", [("自定义地点", 50)], type_="scatter")title_opts=opts.TitleOpts(title="GEO 地图添加自定义坐标示例"),return geo代码解释首先,我们导入Geo类和。
2025-01-25 21:00:55
1378
原创 Pyecharts之特殊图表的独特展示
象形图是一种使用自定义图形来表示数据的图表,比普通的柱状图更加形象生动。下面是# 使用自定义图形,这里使用 'circle' 作为示例"",y_data,symbol='circle', # 自定义图形为圆形title_opts=opts.TitleOpts(title="象形图自定义图形"),xaxis_opts=opts.AxisOpts(is_show=False), # 隐藏 x 轴yaxis_opts=opts.AxisOpts(is_show=False) # 隐藏 y 轴。
2025-01-25 21:00:02
994
原创 Pyecharts之散点图的视觉扩展
在数据可视化中,散点图是一种强大的工具,可用于展示数据点在二维平面上的分布情况。通过添加各种视觉组件,我们可以让散点图变得更加丰富和具有表现力,更能反映数据的多维度特征。本文将详细解读如何为散点图添加不同的视觉组件,包括根据数据大小映射图形大小、同时映射图形大小和颜色,以及综合运用大小、颜色和透明度等多维度的视觉组件。
2025-01-25 20:42:05
1066
原创 Pyecharts之饼图与多饼图的应用
为了让饼图更具可读性和表现力,我们可以对数据标签进行自定义。使用# 自定义数据标签return pie代码解释首先,导入Pie类、options模块和Faker模块。创建Pie实例pie,并设置初始化选项,包括主题、宽度和高度。使用Faker生成一些假数据,通过列表推导式将选择的类别和对应的数值组合成元组列表,然后添加到饼图中。在方法中,使用label_opts来自定义数据标签。
2025-01-25 20:40:22
1095
原创 Pyecharts图表交互功能提升
通过上述示例,我们可以看到 Pyecharts 提供了丰富的交互功能,包括不同类型的缩略轴组件、图例交互效果。这些功能可以让用户更好地与图表交互,深入探索数据,并且增强数据可视化的视觉体验。在实际应用中,可以根据具体的数据和使用场景,灵活选择和组合这些交互功能,为用户带来更加优质的数据可视化服务。在后续的文章中,我们将继续探索 Pyecharts 的更多高级功能,敬请期待!
2025-01-25 20:32:59
597
原创 Pyecharts之图表样式深度定制
通过对图表样式的深度定制,我们可以根据不同的需求和场景,灵活运用线性渐变色、径向渐变色和分割区域,使图表更加生动、美观且易于理解。这些定制功能是 Pyecharts 强大功能的一部分,能让你在数据可视化的过程中展现出更具创意和专业的效果。在后续的文章中,我们将继续探索更多有趣的数据可视化技巧,帮助你进一步提升数据可视化能力。
2025-01-25 20:22:47
980
原创 Pyecharts之双轴图表的魅力
在数据可视化的实践中,我们经常会遇到这样的情景:希望在一张图中展示不同量纲的数据,以便进行对比与关联分析。这时,双轴图表(双 Y 轴或双 X 轴)便可派上用场。通过 Pyecharts,我们可以轻松创建多轴图表,从而在同一个可视化中同时展示多种维度的信息。
2025-01-25 20:21:50
1442
原创 Pyecharts之折线图的灵活运用
有时候,默认的坐标轴标签可能无法完全满足您的需求。通过自定义坐标轴标签文本,可以实现标签的个性化展示,例如修改字体样式、颜色或旋转角度。下面我们将介绍如何实现这一功能,并将标签文本样式进行个性化设置。# 导入所需的库# 创建一个 Line 实例# 添加横坐标数据,例如年份# 添加纵坐标数据"利润(万元)",profits,linestyle_opts=opts.LineStyleOpts(width=4) # 设置线条宽度为4# 设置系列选项,包括显示数据标签。
2024-12-19 15:24:44
736
原创 Pyecharts之柱状图的多样呈现
为了让柱状图更加清晰和易于理解,我们可以自定义数据标签,例如显示数据的具体值、百分比等信息,甚至可以对标签的样式进行调整。# 导入所需的库# 创建一个 Bar 实例# 添加横坐标数据bar_label_custom.add_xaxis(['类别 1', '类别 2', '类别 3'])# 添加纵坐标数据bar_label_custom.add_yaxis('数据系列', [80, 90, 100])# 设置系列选项,包括自定义数据标签。
2024-12-19 15:21:41
822
原创 Pyecharts 入门与环境搭建
Pyecharts 是一个基于 Python 的开源数据可视化库,它封装了百度开源的 Echarts 库的功能,使得 Python 用户能够轻松地创建各种绚丽多彩、交互性强的图表。Echarts 本身是一款非常流行的可视化库,以其丰富的图表类型、流畅的动画效果和强大的交互能力而闻名。Pyecharts 将这些优秀特性引入到 Python 世界,让 Python 开发者无需深入学习前端知识,即可快速生成高质量的可视化图表。
2024-12-19 15:16:14
1029
原创 集成学习之AdaBoost
是一种集成学习方法,它通过迭代地训练弱分类器并将它们组合成一个强分类器来提高模型的性能。AdaBoost的核心思想是每次迭代中赋予错误分类样本更高的权重,从而使得后续的弱分类器更加关注这些难分类的样本。AdaBoost可以应用于分类问题,尤其是二分类问题。本次案例分析使用的数据集包含了一系列工业机器的运行状态记录,包括机器编号、质量等级、工厂温度、机器温度、转速、扭矩、使用时长等特征,以及是否发生故障的标签。我们的任务是基于这些特征预测机器是否会故障。
2024-11-30 16:35:30
608
原创 集成学习之XGBoost
XGBoost(eXtreme Gradient Boosting)是一种高效的梯度提升框架,它实现了梯度提升决策树(Gradient Boosting Decision Trees, GBDT),并在此基础上进行了优化。XGBoost在许多机器学习竞赛中表现出色,因其高效性和强大的预测能力而受到广泛欢迎。XGBoost支持多种目标函数和评估指标,可以处理回归、分类以及排名等问题。
2024-11-30 16:33:47
859
原创 集成学习之梯度提升树
梯度提升树(Gradient Boosting Trees, GBT)是一种强大的集成学习方法,它通过迭代地添加弱预测模型来构建一个强预测模型。在每一轮迭代中,新的模型会试图纠正前序模型产生的错误。GBT可以用于回归和分类问题,并且在许多实际应用中表现优异。梯度提升树是一种非常有效的方法,尤其适用于处理复杂的数据模式。通过本文的介绍与案例分析,希望能帮助读者更好地理解这一算法,并能够在实践中加以运用。在未来的工作中,尝试不同的参数设置以及结合其他技术可能会带来更好的结果。
2024-11-28 14:36:24
1041
原创 集成学习之随机森林
随机森林属于集成学习(Ensemble Learning)中的一种,它是通过构建多个决策树,并综合这些决策树的预测结果来进行最终的预测。就好比一群经验丰富的专家(各个决策树)共同商讨一件事,然后汇总大家的意见(预测结果)得出最终结论,往往这样综合考量后的结果会更加准确可靠。随机森林可以用于解决分类问题,比如判断一封邮件是垃圾邮件还是正常邮件;也能处理回归问题,例如预测某地区的房价走势等。准确性高:通过集成多个决策树,减少了单个模型的偏差和方差,通常能获得比单一决策树更好的预测性能。鲁棒性强。
2024-11-28 14:33:25
836
原创 机器学习之t-SNE降维
t-SNE是一种非线性降维技术,主要用于高维数据的可视化。由Laurens van der Maaten和Geoffrey Hinton于2008年提出,t-SNE通过将高维数据映射到二维或三维空间,保留数据的局部结构,使得在低维空间中的数据点分布能够反映出高维空间中的相似性与簇结构。t-SNE广泛应用于图像处理、自然语言处理、生物信息学等领域的数据探索与分析。t-SNE作为一种强大的非线性降维与可视化工具,在探索高维数据结构、揭示潜在模式方面展现出显著优势。
2024-11-23 13:44:29
1086
1
原创 机器学习算法之主成分分析法(PCA)
主成分分析(PCA)是一种线性降维技术,旨在通过正交变换将高维数据投影到一个低维空间中,同时尽可能保留数据的主要信息。PCA通过找到数据中方差最大的方向(即主成分),将数据沿这些方向进行投影,从而实现降维。主成分分析(PCA)是一种强大的降维工具,通过线性变换将高维数据映射到低维空间,同时保留数据中的主要信息。在实际应用中,PCA不仅可以用于数据压缩和特征提取,还可以帮助我们更好地理解数据结构。希望通过本文的介绍和案例分析,能够让你对PCA有更深入的理解。
2024-11-23 13:42:53
1571
原创 快速学会一个算法:K-means聚类
K-means 是一种简单且广泛使用的聚类算法,其目的是将数据集中的样本划分为 K 个聚类,使得每个样本都属于最近的均值(即聚类中心)所代表的聚类。该算法的目标是最小化所有样本到其聚类中心的距离平方和,这也被称为惯性(inertia)。在这篇文章中,我们深入探讨了K-means聚类算法,这是一种基于距离的简单而强大的无监督学习方法。K-means算法的核心目标是将数据集中的样本划分为K个簇,使得簇内的样本尽可能相似,而簇间的样本尽可能不同。
2024-11-20 14:41:36
632
1
原创 机器学习算法之GMM聚类
高斯混合模型(GMM)是一种基于概率的聚类方法,假设数据集由多个高斯分布(也称为“成分”或“簇”)混合生成。与K-Means等传统聚类算法不同,GMM不仅考虑簇的中心,还考虑簇的形状和大小,通过估计每个数据点属于各个簇的概率,实现更为灵活和准确的聚类效果。复杂数据分布:适用于簇形状不规则、大小不一的数据集。软聚类:允许数据点属于多个簇,适用于模糊边界的聚类任务。概率解释:提供每个数据点的聚类概率,有助于后续的统计分析和决策。
2024-11-20 14:18:00
1286
1
原创 快速学会一个算法:DBSCAN聚类
DBSCAN是一种基于密度的聚类算法,其核心思想是通过密度的概念来定义簇。与传统的K-Means等算法不同,DBSCAN不需要预先指定簇的数量,而是根据数据的局部密度来进行聚类。这使得DBSCAN能够自动识别任意形状的簇,并且能够有效处理噪声数据。:邻域半径,指定数据点周围的邻域范围。MinPts:指定一个簇内至少需要包含的点数。核心点(Core Point):在该点的ε邻域内包含至少MinPts个点。边界点(Border Point)
2024-11-19 22:07:09
995
原创 快速学会一个算法:层次聚类
层次聚类(Hierarchical Clustering)是一种通过构建层次结构来组织数据的聚类方法。与其他聚类算法不同,层次聚类不需要预先指定簇的数量,而是通过构建一个树状结构(树状图,Dendrogram)来展示数据的分层关系。凝聚层次聚类(Agglomerative Hierarchical Clustering):自底向上,先将每个数据点视为一个单独的簇,然后逐步合并最相似的簇,直到所有数据点合并为一个簇或达到预定的簇数量。
2024-11-19 22:03:56
758
原创 强化学习之课程学习法
课程学习是一种有计划的学习方法,模拟人类学习的过程。它通过设置逐步增加难度的任务序列,让学习系统从简单的任务开始,逐渐过渡到复杂任务。这一方法可以显著提高训练效率,避免智能体一开始就面临过于复杂的任务,从而导致学习过程困难。逐步难度增加:从简单的任务开始,逐步增加任务的难度,直到智能体能够解决最复杂的任务。动态调整:根据智能体的学习进展,动态调整任务的难度,保证学习的过程始终处于一个适当的挑战性范围。
2024-11-08 16:31:03
1120
原创 【例003】利用MATLAB绘制有趣平面图形
我们分别取m为100,1000,10000不同的值,绘制不同情况下的图形。通过改变m的值,图形也在不断发生变化,是不是很有趣呢!用 ezplot 画出由方程。
2024-09-01 12:32:27
860
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人