- 博客(186)
- 收藏
- 关注
原创 【例003】利用MATLAB绘制有趣平面图形
我们分别取m为100,1000,10000不同的值,绘制不同情况下的图形。通过改变m的值,图形也在不断发生变化,是不是很有趣呢!用 ezplot 画出由方程。
2024-09-01 12:32:27 796
原创 巴黎奥运会中国奖牌数据分析
7月27日、7月28日、8月6日、7月31日是奖牌数的低谷期,奖牌数较少,其中7月27日和7月31日是因为这两天是比赛日的第一天和最后一天,而且获得的都是金牌,这个成绩也是不错的;在巴黎奥运会上,中国队的表现可谓亮眼,各项比赛日的奖牌总数和不同项目的奖牌分布都引发了广泛关注。:8月3日、8月4日、8月8日、8月10日是奖牌数的高峰期,这几天中国队获得了较多的奖牌,8月8日和8月10日获得的金牌数量最多,均为5枚,尤其是8月10日,奖牌总数达到了11枚,是整个奥运会期间的最高峰。:占比12.09%。
2024-08-15 00:04:49 1576
原创 巴黎奥运会各国奖牌数据可视化分析
从图中可以看出,美国在巴黎奥运会的奖牌数量最多,达到126枚,其次是中国的91枚,日本以45枚排在第三位。中国和美国相比,金牌数量一样,银牌和铜牌数量和美国还有差距。从图中可以看出,美国和中国金牌数量相当,均为40枚,其他国家的金牌数量不及中国/美国的一半,除了中国和美国外,其他8个国家金牌数量总体差距不大。由于官方只给出了具体的奖牌得数,可能大家看起来不是那么直观,所以本文就对巴黎奥运会的奖牌数量进行可视化分析,为了方便起见,本文只选取金牌数量前10的国家进行数据分析。
2024-08-14 23:52:25 954 1
原创 分类模型:MATLAB判别分析
判别分析(Discriminant Analysis)是一种统计方法,用于在已知分类的样本中构建分类器,并根据特征变量对未知类别的样本进行分类。常见的判别分析方法包括线性判别分析(Linear Discriminant Analysis, LDA)和二次判别分析(Quadratic Discriminant Analysis, QDA)。我们将生成一个包含两个类别(Class 1 和 Class 2)的数据集,每个类别各有50个样本。每个样本包含两个特征(Feature 1 和 Feature 2)。
2024-06-13 21:03:04 1153 3
原创 时间序列预测模型:ARIMA模型
ARIMA模型,全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model),是一种常用的时间序列预测方法。ARIMA模型通过对时间序列数据的差分化处理,使非平稳时间序列数据变得平稳,进而利用自回归(AR)和滑动平均(MA)模型对其进行建模和预测。ARIMA模型可以表示为ARIMA(p, d, q),其中:p:自回归项的阶数,表示预测值与过去值之间的关系。d:差分次数,使序列平稳所需的差分次数。
2024-02-17 15:57:10 3535 1
原创 回归预测模型:机器学习回归模型
与SVM用于分类不同,SVR的目标是找到一个函数,这个函数在所有训练样本的误差都不超过一个预定阈值的同时,尽可能平坦。回归树是决策树用于回归问题的一种形式。对于一个新的数据点,KNN回归会在训练集中找到与其最接近的K个邻居,然后通过这些邻居的目标值来计算新点的预测值,通常是取平均或加权平均。:它是由多棵回归树组成的,每棵树独立地对样本进行预测,最终的预测结果是所有树预测结果的平均。这些集成模型通过组合多个简单模型的预测能力,通常能够达到比单一模型更好的预测效果,尤其是在处理复杂的非线性关系时。
2024-02-15 22:06:03 1794
原创 回归预测模型:MATLAB神经网络回归模型
一个基本的神经网络包括输入层、隐藏层(一个或多个)、和输出层。神经网络是一种由节点(或称为“神经元”)和边组成的网络结构,用于模拟人脑分析和处理信息的方式。在回归问题中,神经网络旨在预测一个连续值的输出,基于给定的一组输入特征。在训练过程中,神经网络使用一种称为反向传播的算法,通过迭代地调整权重,以最小化预测值和实际值之间的差异(例如,使用均方误差作为损失函数)。假设使用波士顿房价数据集,其中包含波士顿地区房屋价格的中位数,以及与房价相关的各种特征(如犯罪率、房间数等)。
2024-02-15 22:01:43 1214
原创 回归预测模型:MATLAB多项式回归
与简单的线性回归模型不同,多项式回归模型通过引入自变量的高次项来增加模型的复杂度,从而能够拟合数据中的非线性模式。这样可以直观地展示价格与销量之间的非线性关系及其趋势。我们想要建立一个多项式回归模型,来预测不同价格下的销量。函数可以找到一个多项式的系数,使得该多项式最好地拟合一组数据。多项式回归是线性回归的一种扩展,用于分析自变量。函数基于原始数据拟合了一个二次多项式模型,然后利用。函数,可以使用这些系数来计算或预测因变量的值。在MATLAB中,可以使用。函数来拟合多项式回归模型。是多项式的最高次数,
2024-02-10 21:14:05 2923
原创 重复的子字符串
如果s不包含重复子串,那么s自己就是一次重复的子串,那么把s + s去头去尾中就一定不包含s自己。可由子串 "abc" 重复四次构成。(或子串 "abcabc" 重复两次构成。如果s包含重复子串,那么在s + s去头去尾中就一定能找到s自己。,检查是否可以通过由它的一个子串重复多次构成。最后再看一位老哥的方法,另辟蹊径,真的nb!可由子串 "ab" 重复两次构成。给定一个非空的字符串。
2024-01-15 14:18:40 432
原创 找不同(Python)
给定两个字符串s和t,它们只包含小写字母。字符串t由字符串s随机重排,然后在随机位置添加一个字母。请找出在t中被添加的字母。"e"'e' 是那个被添加的字母。"y"t。
2024-01-10 11:35:03 473
原创 优化模型:matlab多目标规划
是数学优化中的一类问题。与单目标规划不同,多目标规划有多个目标函数需要优化,这些目标函数通常是相互矛盾的。多目标规划的目标是通过找到一组解,使得各个目标函数在约束条件下都能取得最优值。
2023-12-31 15:13:15 4911 2
原创 优化模型:MATLAB非线性规划
是一种数学规划方法,用于解决含有非线性目标函数和/或非线性约束条件的优化问题。它是线性规划的一种扩展形式,更加广泛适用于复杂实际问题。非线性规划的目标是最小化(或最大化)一个非线性目标函数,同时满足一组非线性约束条件。这些非线性函数可以是任意形式的,例如多项式、指数函数、对数函数等。非线性规划的决策变量可以是连续的或离散的,具体取决于问题的性质。与线性规划相比,非线性规划更具挑战性,因为非线性函数的存在使得问题的求解变得更加困难。非线性优化问题往往没有显式解,需要使用迭代算法逐步优化。
2023-12-25 16:07:39 3640
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人