- 博客(7)
- 收藏
- 关注
原创 机器学习笔记【1】:什么是激活函数&该怎么选择激活函数
什么是深度学习?什么是激活函数?如何选择激活函数?1.深度学习&激活函数首先我们有一些输入数据,并且将其量化。然后将数据输入到神经网络中,这一步基本上对输入数据逐层进行一系列的矩阵运算。input*权重(w)+偏移(b)=output1(hj)aj=激活函数例如sigmiod(hj)不断重复这个过程知道网络最后一层,输出就是我们的预测结果,如下图,可以把Ok看做y^我们找到预测值y^和标签y之间的差距E,如下图使用这个差距E,利用权重,计算出偏导数,递归地反向传播(所以后期需
2020-07-29 18:09:49
781
原创 【工作记录】Jupyter Notebook报错:IOPub data rate exceeded
Jupyter notebook由于内存报错jupyter内存的问题,调整过后即可正常显示。处理方法:1.在cmd中输入:jupyter notebook --generate-config,可以看到生成一个路径2.找到对应路径下的文件,从中找到iopub_data_rate_limit,在去掉注释后多加好多03.重新启动jupyter notebook,即可看到原先报错的内容可以显示啦...
2020-07-29 18:04:12
920
原创 Pytorch基础学习【3】——nn.BatchNorm
1.nn.BatchNorm1d(num_features) 1.对小批量(mini-batch)的2d或3d输入进行批标准化(Batch Normalization)操作 2.num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features [x width]' 意思即输入大小的形状可以是'batch_size x num_features' 和 'bat
2020-07-21 17:59:27
3112
原创 Pytorch基础学习【2】——torch.randn与torch.rand
Pytorch基础学习【2】——torch.randn与torch.randtorch.rand和torch.randn有什么区别? y = torch.rand(5,3) y=torch.randn(5,3)一个均匀分布,一个是标准正态分布。均匀分布torch.rand(*sizes, out=None) → Tensor返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。参数:sizes (int…) - 整数序列,定义了输出张量的形状ou
2020-07-21 17:52:01
552
原创 pytorch基础学习【1】——numpy array维度 len() size()&shape()
**python 中 numpy array 中的维度**简介numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数。有时候我们可能需要知道某一维的特定维数。(1)二维情况import numpy as npy = np.array([[1,2,3],[4,5,6]])print(y)[[1 2 3][4 5 6]]print(y.shape)(2, 3)print(y.shape[0])2print(y.shape[1
2020-07-13 23:00:32
3142
原创 机器学习笔记【3】:反向传播算法学习【2】
#反向传播算法学习【2】反向传播算法是以常见线性代数操作为基础——诸如向量加法,向量与矩阵乘法等运算。反向传播(backpropagation)能够帮助解释网络的权重和偏置的改变是如何改变代价函数的。归根结底,它的意思是指计算偏导数。...
2020-07-13 22:44:10
137
原创 机器学习笔记【2】:反向传播算法学习
反向传播算法学习我们利用梯度下降算法来学习权重(weights)和偏置(biases)那么如何计算代价函数的梯度?一个快速计算梯度的算法,就是广为人知的反向传播算法(backpropagation)#背景反向传播算法最早于上世纪70年代被提出,但是直到1986年,由David Rumelhart, Geoffrey Hinton, 和Ronald Williams联合发表了一篇著名论文之后,人们才完全认识到这个算法的重要性。这篇论文介绍了几种神经网络,在这些网络的学习中,反向传播算法比之前提出的
2020-06-28 14:24:01
429
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人