天梯 并查集
link
Red Alert
一步步攻占,一个城市一个城市攻占
【解题思路】
每一次都要重新判断一下需要连接的道路变化有无影响
有影响的情况比较难找,那就直接先判断没有影响的情况
就是等于前集合数目等于现集合数目或原集合数目+1等于现集合数目(因为题意,若该国本来就不完全连通,是分裂的k个区域,而失去一个城市并不改变其他城市之间的连通性,则不要发出警报)
这样即使去掉当前结点也无碍
如果连通块数组不变或者减1(原来就是孤立得一个),说明图连通块数目不受影响
如果连通块数目增加了1,则说明连通块加1,图中连通性受到影响
for(int i=0;i<m;i++){
//城市的编号从0开始
int a,b;
cin>>a>>b;
road[i].a=a;
road[i].b=b;//1条路的2端的节点分别是a和b
Union(a,b);//并查集
}
int cnt=0;//记录原来的连通块的个数
for(int i=0;i<n;i++){
// if(isRoot[i]!=0)
// cnt++;
if(father[i]==i)cnt++;
}
for(int i=0;i<k;i++){
int city;
cin>>city;
lost[city]=1;//标记该city已经被攻占
init(n);//已经得到了 原来的连通块的个数,可以进行下一步了,删除一个,再计算,比较
//memset(isRoot,0,sizeof(isRoot));//isRoot也进行重生
for(int j=0;j<m;j++){//关系数//每一段关系都去比较
if(lost[road[j].a]==0&&lost[road[j].b]==0)//只有2个端点都没有被攻占的路才能实现联通
Union(road[j].a,road[j].b);
}
//计算每攻占1个城市后的联通块数,进行比较
int cnt1=0;//每攻占1个城市后的联通块数
for(int j=0;j<n;j++){
if(father[j]==j&&lost[j]==0)//根节点并且没有被攻占---》没有被攻占的组数/块数
cnt1++;
}
if(cnt1==cnt||cnt1+1==cnt)printf("City %d is lost.\n",city);
else printf("Red Alert: City %d is lost!\n",city);
if(cnt1==0)
printf("Game Over.\n");
cnt=cnt1;
}
//输入
//第一行 n,m----城市个数(编号从0开始)----连接2城市的通路条数
//随后m行,一条道路所连接的城市编号
/*
5 4
0 1
1 3
3 0
0 4
5
1 2 0 4 3
*/
//K ----被攻占的城市的数目
//5
//K个被攻占的城市的编号
//1 2 0 4 3
/*---------
City 1 is lost.
City 2 is lost.
Red Alert : City 0 is lost!
City 4 is lost.
City 3 is lost.
Game Over.
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,m;
int father[10010];
int isRoot[10010]={0};
int lost[10010]={0};
struct Road{
int a,b;//连接1条路的2个端点a,b
}road[10010];
void init(int n){
for(int i=0;i<n;i++)
father[i]=i;
}
int findFather(int i){
if(father[i]==i)return i;
else{
int F=findFather(father[i]);
father[i]=F;
return F;
}
}
void Union(int a,int b){
int faA=findFather(a);
int faB=findFather(b);
if(faA!=faB)father[faA]=faB;
}
int main()
{
cin>>n>>m;//5 4
init(n);
// 0 1
// 1 3
// 3 0
// 0 4
for(int i=0;i<m;i++){
//城市的编号从0开始
int a,b;
cin>>a>>b;
road[i].a=a;
road[i].b=b;//1条路的2端的节点分别是a和b
Union(a,b);//并查集
}
//先吸收 被攻占的城市的编号
int k;
cin>>k;
// //计算原来的连通块的个数,方便与后面每攻占1个城市后的联通块数,进行比较
// for(int i=0;i<n;i++){//城市的编号从0开始
// isRoot[findFather(i)]++; //标记根节点(每个组的标志)不为0
// }
int cnt=0;//记录原来的连通块的个数
for(int i=0;i<n;i++){
// if(isRoot[i]!=0)
// cnt++;
if(father[i]==i)cnt++;
}
for(int i=0;i<k;i++){
int city;
cin>>city;
lost[city]=1;//标记该city已经被攻占
init(n);//已经得到了 原来的连通块的个数,可以进行下一步了,删除一个,再计算,比较
//memset(isRoot,0,sizeof(isRoot));//isRoot也进行重生
for(int j=0;j<m;j++){//关系数//每一段关系都去比较
if(lost[road[j].a]==0&&lost[road[j].b]==0)//只有2个端点都没有被攻占的路才能实现联通
Union(road[j].a,road[j].b);
}
//计算每攻占1个城市后的联通块数,进行比较
int cnt1=0;//每攻占1个城市后的联通块数
for(int j=0;j<n;j++){
if(father[j]==j&&lost[j]==0)//根节点并且没有被攻占---》没有被攻占的组数/块数
cnt1++;
}
if(cnt1==cnt||cnt1+1==cnt)printf("City %d is lost.\n",city);
else printf("Red Alert: City %d is lost!\n",city);
if(cnt1==0)
printf("Game Over.\n");
cnt=cnt1;
}
return 0;
}
-----------------
#include <cstdio>
#include <iostream>
using namespace std;
int father[10010];
int lost[10010] = { 0 };//被攻占的城市标记为1,初始化都为0,没有被攻占
int isRoot[10010] = { 0 };
struct Road {
int a, b;//1条路的2个端口
}road[10010];
void init(int n) {
for (int i = 0; i <n; i++) {
father[i] = i;
}
}
int findFather(int i) {
if (father[i] == i)return i;
else {
int F=findFather(father[i]);
father[i]=F;
return F;
}
}
void Union(int a,int b) {
int faA = findFather(a);
int faB = findFather(b);
if (faA != faB)father[faA] = faB;
}
int main() {
int n, m, k;
scanf_s("%d%d", &n, &m);
init(n);
for (int i = 0; i < m; i++) {//第i条有关系的路
int a, b;
scanf_s("%d%d", &a, &b);
road[i].a = a;
road[i].b = b;
Union(a, b);
}
//cout << "ok";
scanf_s("%d", &k);
/*
int cnt = 0;
for (int i = 0; i < n; i++) {
if (father[i] == i)
cnt++;
}
*/
//人的编号从1开始
for (int i = 1; i <= n; i++) {
//isRoot[father[i]] = true;//i的根节点是findFather(i)-已经压缩路径了
isRoot[findFather(i)]++;
}
//int ans = 0;//记录集合的数目
int cnt = 0;
for (int i = 1; i <= n; i++) {
if (isRoot[i] != 0) {
cnt++;
}
}
for (int i = 0; i < k; i++) {//1 2 0 4 3
int city;
cin>>city;
init(n);//???????//归0
lost[city] = 1;
for (int j=0; j < m; j++) {//关系数
if (lost[road[j].a]==0 && lost[road[j].b] == 0)//给出的某1有关系的路的2个端口,都没有被攻占
Union(road[j].a, road[j].b);
}
int cnt1 = 0;//攻占后,完好的块数
for (int j = 0; j < n; j++) {
if (father[j] == j && lost[j] == 0) {//没被攻占的根节点的个数//没被全部打下来的块数
cnt1++;
}
}
if(cnt1+1==cnt||cnt1==cnt)printf("City %d is lost.\n", city);
else printf("Red Alert: City %d is lost!\n", city);
if (cnt1 == 0)cout << "Game Over.\n";//根节点全部被打下来了
cnt = cnt1;
}
return 0;
}