|求素数中sqrt()的原理 连续因子fori if for j----maxL--maxi--l|L1-006 连续因子 (20分)

r

判断素数用sqrt?
我们假设一个数a;
那么a=(a ^ 1/2)*(a ^ 1/2);
如果a不是素数;
那么a有一个因子b,使得 a=b * c;
那么a的因子中(b或c)必定有一个是小于等于a ^ 1/2的;
所以判断的时候不用判断到1-a,只需要1-a^1/2; 明白了吧?
在这里插入图片描述

//输出最小的连续因子序列,其中因子按递增顺序输出,1 不算在内。

//N为素数时,最长连续因子的个数为1,即它自己。

//N不为素数时,即N为合数时,暴力模拟即可,
	//将连续的数进行累积,直到累积后的结果不能被N整除为止,
	//这样就能够不断更新最长连续因子的个数,
	//预保留第一个数,就可以在最终输出是能够直接输出这几个连续因子。

#include <iostream>
#include <cmath>
using namespace std;

bool isPrime(int n) {
	for (int i = 2; i <= sqrt(n); i++) {
		if (n % i == 0) {
			return false;
		}
	}
	return true;
}

int main() {
	int n;
	cin >> n;
	if (isPrime(n) == true) {
		cout << 1 << endl;
		cout << n << endl;
	}
	else {
		int maxLen = 0, begin_;
		for (int i = 2; i <= sqrt(n); i++) {
			if (n % i == 0) {
				int ans = i;
				int j;
				for (j = i + 1; j <= sqrt(n); j++) {
					ans *= j;
					if (n % ans != 0) {
						break;
					}
				}
				if (j - i > maxLen) {
					maxLen = j - i;
					begin_ = i;
				}
			}
		}
		cout << maxLen <<endl;
		for (int i = begin_; i <= begin_ + maxLen - 1; i++) {
			if (i != begin_)cout << "*";
			cout << i;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值