ASM入网小助手卸载(亲测可用)

本文讲述了作者在实习期间遇到公司入网小助手卸载需要密码的问题,分享了解决方案,包括使用任务管理器结束进程、删除特定文件并重启电脑以阻止自动启动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 实习的时候装了公司的入网小助手,今天卸载的时候突然发现要密码,在网上搜寻半天解决方法都比较复杂,最后找到个解决办法,亲测可用。
    在这里插入图片描述

  2. 打开任务管理器找到 IsaHelp 进程,然后右击打开文件所在位置
    在这里插入图片描述

  3. C:\Windows\SysWOW64\IsAgent文件夹中全选进行删除,注意部分文件会提醒正在运行中,这时候打开任务管理器,在进程把lsHelp的相关进程全部选择结束任务。
    在这里插入图片描述

  4. 有些文件始终无法删除,需下载一个freefixer
    在这里插入图片描述

  5. 点击Browse把C:\Windows\SysWOW64\IsAgent里边剩余无法删除的文件添加到Full path点击Delete File,这时候文件不会立即删除,需要重启,把所有文件都添加一遍,然后重启电脑,这个时候ASM已经不会自动启动了,然后去C:\Windows\SysWOW64\IsAgent看一下,如果还有IsAgent,把IsAgent文件夹删除即可

### 欧拉角、旋转矩阵和四元数的关系 #### 定义与概念 欧拉角是一种用于描述刚体姿态的方法,通过三个连续的旋转变换来定义物体的姿态。通常使用的序列有 ZYX 或 XYZ 等[^1]。 旋转矩阵是一个正交矩阵,用来表示三维空间中的旋转操作。它由九个元素组成,这九个元素满足特定条件使得行列式的值为 1,并且每一列都是单位向量。 四元数则提供了一种紧凑的方式来表达三维旋转,避免了万向锁问题并减少了计算复杂度。一个四元数 \(q\) 可以写作: \[ q = w + xi + yj + zk \] 其中 \(w, x, y,\) 和 \(z\) 是实数部分和虚部系数;\(i,j,k\) 遵循哈密顿乘法规则。 #### 优点对比 - **欧拉角** - 易于理解和解释物理意义。 - 存在奇异点(即当俯仰角接近 ±90°时),此时会出现所谓的“万向锁”,导致自由度丢失[^2]。 - **旋转矩阵** - 不受奇异性影响,在所有情况下都能唯一确定旋转状态。 - 计算开销较大,因为涉及到更多的浮点运算以及存储需求更高。 - **四元数** - 更加高效地处理插值和平滑过渡等问题。 - 对抗数值不稳定性和累积误差的能力较强[^3]。 #### 应用场景 - **机器人学**:为了简化控制算法的设计过程,常采用四元数来代替传统的欧拉角或旋转矩阵形式来进行姿态估计和路径规划任务。 - **计算机图形学**:由于其良好的视觉效果表现力,特别是在动画制作领域内广泛运用四元数实现平滑的对象运动轨迹模拟[^4]。 - **航空航天工程**:飞行器导航系统依赖高精度的姿态量设备如陀螺仪等传感器数据融合技术,利用四元数能够更精确稳定地跟踪目标位置变化情况。 ```python import numpy as np def euler_to_quaternion(roll, pitch, yaw): cy = np.cos(yaw * 0.5) sy = np.sin(yaw * 0.5) cp = np.cos(pitch * 0.5) sp = np.sin(pitch * 0.5) cr = np.cos(roll * 0.5) sr = np.sin(roll * 0.5) w = cr * cp * cy + sr * sp * sy x = sr * cp * cy - cr * sp * sy y = cr * sp * cy + sr * cp * sy z = cr * cp * sy - sr * sp * cy return [w, x, y, z] ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值