《数据结构》—— 由遍历序列构造唯一二叉树

本文探讨了如何使用不同组合的遍历序列(先序、中序、后序、层序)来唯一确定二叉树的结构。分析指出,仅凭一种遍历序列无法唯一确定树形,但结合两种遍历(如先序+中序,后序+中序,层序+中序)则能重建二叉树。通过实例解析了如何根据给定的遍历序列逐步构建二叉树的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、一种遍历确定二叉树?

通过先、中、后序遍历的序列,确定唯一的二叉树。

例如:BDCAE的的中序遍历:中序遍历左子树、根结点、中序遍历右子树。可以画出不同的树。
在这里插入图片描述
BDCAE的前序遍历,画出不同的树。
在这里插入图片描述
BDCAE的后序遍历:前序遍历左子树、前序遍历右子树、根结点。
在这里插入图片描述
层序遍历序列也是同理。

所以结论: 若只给出一棵二叉树的 先、中、后、层 序遍历序列中的一种,不能唯一确定一棵二叉树。


二、两种遍历确定二叉树?

2.1 先序 + 中序遍历序列

先序遍历可以推出根节点,中序序列确定左右子树。

例如:
前序遍历序列:A D B C E
中序遍历序列:B D C A E
【分析】:A为根节点,(BDC)为左子树,(E)为右子树;

然后还剩下:(BDC)序列:
前序遍历序列:D B C
中序遍历序列:B D C
【分析】:D为根节点,B为左子树,C为右子树。
在这里插入图片描述
最后验证一下二叉树的先序与中序是否跟原条件一样。


例如:
先序遍历序列:D A E F B C H G I
中序遍历序列:E A F D H C B G I
根节点为D,左子树(E A F),右子树(H C B G I) ;

1、对左子树(E A F):
先序遍历序列:A E F
中序遍历序列:E A F
根节点A,左E,右F;
在这里插入图片描述

2、对右子树(H C B G I):
先序遍历序列:B C H G I
中序遍历序列:H C B G I
根节点B,左HC,右GI;
在这里插入图片描述
3、对HC:
先序遍历序列:C H
中序遍历序列:H C
根为C,左H;

4、对GI:
先序遍历序列:G I
中序遍历序列:G I
根G,右I;

二叉树如下图所示:
在这里插入图片描述


2.2 后序 + 中序遍历序列

同理,后序的最后一个是根节点,中序序列确定左右子树。

例如:
后序遍历序列:E F A H C I G B D
中序遍历序列:E A F D H C B G I
D为根节点,左(E A F),右( H C B G I)

1、对左子树(E A F):
后序遍历序列:E F A
中序遍历序列:E A F
根节点A,左E,右F;

2、对右子树(H C B G I):
后序遍历序列:H C I G B
中序遍历序列:H C B G I
根节点B,左HC,右GI;
在这里插入图片描述
3、对HC:
后序遍历序列:H C
中序遍历序列:H C
根为C,左H;

4、对GI:
后序遍历序列:I G
中序遍历序列:G I
根G,右I;

在这里插入图片描述


2.3 层序 + 中序遍历序列

层序遍历第一个为根节点,中序序列确定左右子树。

例如:
层序遍历序列:A B C D E
中序遍历序列:A C B E D
根结点A,左为空NULL,右为(C B E D);

1、右为(C B E D);
层序遍历序列:B C D E
中序遍历序列:C B E D
根B,左C,右ED;
在这里插入图片描述
2、右ED:
层序遍历序列:D E
中序遍历序列:E D
根为D,左为E。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唐樽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值