笔记
墨汐_
这个作者很懒,什么都没留下…
展开
-
朴素贝叶斯分类算法理解笔记
朴素贝叶斯分类算法理解笔记决策树是一种非常明确的判断选择过程,即某个判断条件确定了,则接下来的决策路径也确定了。但在很多实际问题中,某一个判定条件满足与否,并不能百分百支持做出某个决策,往往只在一定程度上影响最终决策。而这个一定程度,在数学上可以用概率来量化。贝叶斯分类算法是一种有监督的分类算法,以贝叶斯公式作为支撑,在大量样本下有良好的表现。1、有关的几个概念举个例子:每年有 52 周,其中 40 周是上学周, 12 周是放假周。上学周的周一有 80% 的可能性发生早高峰拥堵 。放假周的周原创 2020-11-08 21:46:23 · 340 阅读 · 0 评论 -
决策树算法原理理解笔记
决策树算法原理理解笔记1、有关的几个概念以下面的表格里的数据作为样本:信息熵信息熵 用于评估一个因素指标的重要程度,它可以解释为需要花费多少次判断,才可以消除概率事件的不确定性。例如:一盏只有D = { on / off } 两种状态的灯,它需要1次判断才能对它的状态进行确定,而如果是一盏一直亮着的灯,则不需要判断就能确定它的状态,因此它的信息熵为0。信息熵在数学意义上解释的公式如下:样本的最终有两个分类结果:“是” 和 “否” ,因此样本总体的信息熵为:...原创 2020-11-05 19:19:51 · 784 阅读 · 2 评论 -
Apriori关联规则算法(AR算法)理解笔记
Apriori关联规则算法(AR算法)理解笔记1、有关的几个概念事务和项集项目 可以是一种商品,一个网页链接或一个险种项集 是若干个 项目 的 集合 ,若项集包含k个项目,则称该项集为k-项集事务 由 序号 和 项集 组成序号 是确定一个 事务 的唯一标志关联规则频繁项集:经常同时出现的一些项目的集合关联规则:项集A与项集B的相互依存性和关联性。如果存在A->B的蕴含式,则说明两种项目之间存在很强的某种联系2、重要的三个核心概念支持度支持度用于衡量规则在数据库中出现的频率例如原创 2020-10-23 22:55:38 · 1421 阅读 · 1 评论 -
BP神经网络实现手写数字输入识别python
BP神经网络实现手写数字输入python首先,我们需要引入下面两个库import numpyimport scipy.special然后创建一个神经网络类,类里有三个函数:初始化函数、训练函数和查询函数。初始化函数1、引入输入层、隐藏层、输出层的节点个数、学习率这些参数2、用numpy.random.normal生成初始权重矩阵(ps1: numpy.random.normal...原创 2020-02-16 16:03:33 · 7107 阅读 · 5 评论 -
周志华-机器学习-第三章线性模型-学习总结
周志华-机器学习-第三章线性模型-学习总结这篇博客以我制作的思维导图为主要介绍,再加上一些文字解释帮助读者理解一、大体脉络线性模型这章主要讲述了几个点:线性回归、对数几率回归、线性判别分析LDA、多分类学习和类别不平衡问题。二、线性模型的基本形式三、线性回归问题描述一元线性回归只有一个属性值w,函数式为y=wx + b所谓线性回归就是用已有的数据集来拟合一条线,从而达到...原创 2020-02-04 13:57:05 · 586 阅读 · 0 评论 -
从python开始学编程---第二章 先做键盘侠
从python开始学编程—第二章 先做键盘侠2.1计算机会算数2.1.1数值运算python内置的算术运算符有:加:+、减:-、乘:*、除:/、求整://、求余:%、幂:** 下面是运算演示:>>> 2+24>>> 2-20>>> 2*24>>> 2/21.0>>> 3//21...原创 2019-12-16 16:23:28 · 159 阅读 · 0 评论