题目
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
思路
我们首先能想到的是,
当以root为根节点进行查找时,如果p或者q刚好等于root,那么p和q的最近公共祖先就是root。
那如果p或者q都不等于root怎么办呢?
这种情况下就是要从root的左右子树中寻找p和q。
运用递归思路。
整个递归过程实际是查找root的左右子树中是否有p和q节点,查找结果分为下面四种情况:
如果左右子树中都找不到p和q。就返回空;
如果左子树找不到,右子树能找到,就返回右子树的查找结果;
如果左子树能找到,右子树找不到,就返回左子树的查找结果;
如果左右两个子树都能找到,说明p和q分别位于root的两侧,那么就返回当前的root。
代码
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:
if not root: return None
if root==p or root==q: return root
resL = self.lowestCommonAncestor(root.left,p,q)
resR = self.lowestCommonAncestor(root.right,p,q)
if not resL: return resR
if not resR: return resL
if not resL and not resR: return None
if resL and resR: return root
复杂度
时间复杂度 O(N): 其中 N为二叉树节点数;最差情况下,需要递归遍历树的所有节点。
空间复杂度 O(N): 最差情况下,递归深度达到 N ,使用 O(N) 大小的额外空间。