数据结构简单概念和性质 -- 树

概念

:结点拥有的子树数称为结点的度,度为 0 的结点称为叶子结点,不为 0 的叫分支结点。树的度是树内各节点的度的最大值。

树的深度:树中结点最大的层次称为树的深度(Depth)或高度。

森林:m(m >= 0)棵互不相交的树的集合。

斜树:所有结点都是只有右子树的二叉树叫右斜树,反之叫左斜树。

满二叉树:二叉树中,所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上。

完全二叉树:1. 叶子结点只能出现在最下两层,2. 最下层叶子一定集中在左部连续位置,3. 倒数第二层,若有叶子结点,一定都在右部连续位置,4. 如果结点度为 1,则该结点只有左孩子,5. 同样结点数的二叉树,完全二叉树的深度最小。

分支结点/非终端结点
叶子结点/终端结点
根节点
内部节点

性质

性质1:在二叉树的第 i 层上至多有 2 i − 1 2^{i-1} 2i1个结点(i >= 1)

性质2:深度为 k 的二叉树至多有 2 k − 1 2^k-1 2k1个结点(k >= 1)

性质3:对任何一棵二叉树 T ,如果其终端节点数为 n 0 n_{0} n0 ,度为 2 的结点数为 n 2 n_2 n2 ,则 n 0 = n 2 + 1 n_{0} = n_2 + 1 n0=n2+1

性质4:具有 n 个结点的完全二叉树的深度为 l o g 2 n + 1 log_2n + 1 log2n+1

性质5:如果对一棵有 n 个结点的完全二叉树的结点按层序编号(从第一层到第 l o g 2 n + 1 log_2n + 1 log2n+1 层,每层从左到右),对任一结点 i (i∈[1, n])有:

  • 如果 i = 1,则结点 i 是二叉树的根,无双亲;如果 i > 1,则其双亲是结点 i / 2
  • 如果 2i > n ,则结点 i 无左孩子(结点 i 为叶子结点);否则其左孩子是结点 2i。
  • 如果 2i + 1 > n,则结点 i 无右孩子;否则其右孩子是结点 2i + 1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值