自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(325)
  • 收藏
  • 关注

原创 《MATLAB项目实战》,专栏目录和介绍

MATLAB 是一款强大且广泛应用的数值计算和数据可视化软件工具,它提供了一个高效、简洁的编程环境,使用户能够进行从简单的矩阵运算到复杂的多维数据分析的各种计算任务。无论是在人工智能、计算机视觉、图像处理还是其他领域,MATLAB 都能够提供精准、快速的解决方案,因此成为了全球科研人员、工程师以及数据分析师的得力工具。

2024-09-25 00:30:00 2904 5

原创 《手把手教你YOLOv10实战》,专栏目录和介绍

在计算机视觉领域,目标检测技术一直是研究和应用的热点,而YOLO系列算法凭借其高效性和精确性,成为了广泛应用的选择。YOLOv10作为YOLO系列的最新版本,继承并扩展了前辈的优点,同时也带来了许多创新和改进。本专栏将手把手教你掌握YOLOv10的实战技巧,包括算法改进、环境配置和训练自己数据集等,让你能够迅速上手并应用到实际项目中。

2024-09-14 09:44:00 1505 8

原创 《手把手教你YOLOv9实战》,改进专栏目录

为了提供友好的操作效果,本专栏将会手把手搭建可视化界面,我将用PyQt5 搭建一个可视化界面,可视化界面能够实现基本的图像加载与检测功能,如支持视频、摄像头,还支持更换不同的 YOLOv9 模型,并适应不同领域(如口罩检测系统、人脸检测系统、工业缺陷检测系统等),界面灵活、功能强大。通过YOLOv9加以改进设计,形成新的算法框架,一起水科研和论文,专栏会一直持续更新中,本专栏适合目标检测、分割、分类。

2024-08-09 14:48:14 870 2

原创 《手把手教你YOLOv8/YOLOv11实战》,改进专栏目录和介绍

YOLOv8 是目前比较火和比较成熟的深度学习框架,是2023年1月发布的,由 Ultralytics 团队开发。Ultralytics自YOLOv5 开始一直积极维护和更新 YOLO 框架,因此 YOLOv8 也享有持续的维护与升级支持。因此我写下《手把手教你YOLOv8实战》专栏,专门为那些对计算机视觉、深度学习、以及目标检测技术感兴趣的读者设计。通过本专栏,你将深入理解 YOLOv8 的核心原理与实际应用,从0 开始学习并掌握如何使用 YOLOv8 完成各类目标检测任务,帮助你快速上手并掌握 YOLO

2024-08-09 10:47:42 2872 2

原创 YOLOv10改进,YOLOv10检测头融合DynamicHead,添加小目标检测层(四头检测)+CA注意机制,全网首发

DynamicHead模块是针对目标检测任务提出的一种新的头部(head)结构,它的设计目的是通过引入多种注意力机制,提升模型的检测能力。核心思想是使得检测头部可以动态地根据输入特征进行自适应调整,从而提高模型在不同尺度、空间、任务等方面的表现。Scale-Aware Attention Module(尺度感知注意力模块):该模块根据特征的尺度进行调整,使得不同尺度的特征能在合适的尺度下进行融合和处理。它通过为不同尺度的特征赋予权重来优化尺度差异的影响。

2025-01-27 21:03:32 413

原创 YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务

YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务

2025-01-27 20:29:13 986

原创 YOLOv8改进,YOLOv8检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等,全网独发

YOLOv8改进,YOLOv8检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等,全网独发

2025-01-25 20:50:53 966

原创 YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发

YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发

2025-01-25 18:27:19 239

原创 YOLOv11改进,YOLOv11添加ASFF检测头,并添加小目标检测层(四头检测),适合目标检测、分割等任务,全网首发

YOLOv11改进,YOLOv11添加ASFF检测头,并添加小目标检测层(四头检测),适合目标检测、分割等任务,全网首发

2025-01-24 12:54:55 747

原创 YOLOv10改进,YOLOv10添加ASFF检测头(自适应空间特征融合),添加小目标检测层(四头检测)+CA注意机制,全网首发

YOLOv10改进,YOLOv10添加ASFF检测头(自适应空间特征融合),添加小目标检测层(四头检测)+CA注意机制,全网首发

2025-01-24 11:34:46 152

原创 YOLOv9改进,YOLOv9检测头融合DSConv卷积,适合目标检测、分割任务

YOLOv9改进,YOLOv9检测头融合DSConv卷积,适合目标检测、分割任务

2025-01-23 15:16:07 494

原创 YOLOv10改进,YOLOv10检测头融合DSConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发

YOLOv10改进,YOLOv10检测头融合DSConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发

2025-01-23 14:45:43 45

原创 YOLOv11改进,YOLOv11检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等任务

YOLOv11改进,YOLOv11检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等任务

2025-01-22 12:59:20 784

原创 YOLOv8改进,YOLOv8检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等

YOLOv8改进,YOLOv8检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等

2025-01-22 11:56:31 332

原创 YOLOv9改进,YOLOv9检测头融合DiverseBranchBlock(多样分支块),适合目标检测、分割任务

YOLOv9检测头融合DiverseBranchBlock(多样分支块),适合目标检测、分割任务

2025-01-21 16:28:17 468

原创 YOLOv10改进,YOLOv10检测头融合DiverseBranchBlock(多样分支块),添加小目标检测层(四头检测)+CA注意机制,全网首发

YOLOv10检测头融合DiverseBranchBlock(多样分支块),添加小目标检测层(四头检测)+CA注意机制,多样分支块(DiverseBranchBlock)的代表性设计如下图所示(摘自论文):1.DiverseBranchBlock(DBB)采用多分支拓扑结构,包括多尺度卷积、顺序1×1 - K×K卷积、平均池化和分支相加。这些具有不同感受野和复杂度的路径操作可以丰富特征空间,就像Inception架构一样。2.DiverseBranchBlock(DBB)可以在推理时等效地转换为单个卷积。

2025-01-21 12:54:07 147

原创 YOLOv11改进,YOLOv11检测头融合DiverseBranchBlock(多样分支块),并添加小目标检测层(四头检测),适合目标检测、分割等任务

YOLOv11检测头融合DiverseBranchBlock(多样分支块),并添加小目标检测层(四头检测)。多样分支块(DiverseBranchBlock)的代表性设计如下图所示(摘自论文):1.DiverseBranchBlock(DBB)采用多分支拓扑结构,包括多尺度卷积、顺序1×1-K×K卷积、平均池化和分支相加。这些具有不同感受野和复杂度的路径操作可以丰富特征空间,就像Inception架构一样。2.DiverseBranchBlock(DBB)可以在推理时等效地转换为单个卷积。

2025-01-20 14:32:28 415

原创 YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等

YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测。多样分支块(DiverseBranchBlock)的代表性设计如下图所示(摘自论文):1.DiverseBranchBlock(DBB)采用多分支拓扑结构,包括多尺度卷积、顺序1×1-K×K卷积、平均池化和分支相加。这些具有不同感受野和复杂度的路径操作可以丰富特征空间,就像Inception架构一样。2.DiverseBranchBlock(DBB)可以在推理时等效地转换为单个卷积

2025-01-20 13:46:24 382

原创 手把手教你完成基于深度学习的水果计价系统,使用PySide6设计YOLOv8水果计价检测系统,包含模型+训练结果,全网最详细教程

手把手教你完成基于深度学习的水果计价系统,使用PySide6设计YOLOv8水果计价检测系统,包含模型+训练结果,全网最详细教程

2025-01-19 13:14:33 122

原创 YOLOv9改进,YOLOv9检测头融合RepConv卷积,适合目标检测、分割任务

RepConv 通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和训练效果,而在推理时,通过重参数化将这些操作转化为单一的卷积层,从而减少计算量和提高速度。训练阶段:在训练时,使用常规的多分支结构,包含多个卷积层、BN 层以及跳跃连接。这种结构可以使模型在训练过程中具有更高的表达能力,从而提高训练性能。这时,每个卷积层可以通过与不同的卷积核和跳跃连接组合来建模复杂的特征。

2025-01-19 00:41:13 348

原创 YOLOv10改进,YOLOv10检测头融合RepConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发

RepConv 通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和训练效果,而在推理时,通过重参数化将这些操作转化为单一的卷积层,从而减少计算量和提高速度。训练阶段:在训练时,使用常规的多分支结构,包含多个卷积层、BN 层以及跳跃连接。这种结构可以使模型在训练过程中具有更高的表达能力,从而提高训练性能。这时,每个卷积层可以通过与不同的卷积核和跳跃连接组合来建模复杂的特征。

2025-01-19 00:22:56 54

原创 YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务

RepConv 通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和训练效果,而在推理时,通过重参数化将这些操作转化为单一的卷积层,从而减少计算量和提高速度。训练阶段:在训练时,使用常规的多分支结构,包含多个卷积层、BN 层以及跳跃连接。这种结构可以使模型在训练过程中具有更高的表达能力,从而提高训练性能。这时,每个卷积层可以通过与不同的卷积核和跳跃连接组合来建模复杂的特征。

2025-01-18 23:49:08 360

原创 YOLOv8改进,YOLOv8检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等

RepConv 通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和训练效果,而在推理时,通过重参数化将这些操作转化为单一的卷积层,从而减少计算量和提高速度。训练阶段:在训练时,使用常规的多分支结构,包含多个卷积层、BN 层以及跳跃连接。这种结构可以使模型在训练过程中具有更高的表达能力,从而提高训练性能。这时,每个卷积层可以通过与不同的卷积核和跳跃连接组合来建模复杂的特征。

2025-01-18 23:18:38 252

原创 YOLOv9改进,YOLOv9检测头融合RFAConv卷积,适合目标检测、分割任务

YOLOv9检测头融合,适合目标检测、分割,RFAConv的核心思想是解决卷积神经网络中的卷积核参数共享问题,并通过感受野空间特征提高网络的性能。其创新在于引入了一种新的注意力机制——感受野注意力(RFA),该机制不仅关注空间特征,还有效地解决了大尺寸卷积核的参数共享问题,从而提升了网络的表达能力。核心思想如下:卷积核参数共享问题:在标准卷积中,同一个卷积核的参数被应用于整个图像的不同感受野区域,因此不同位置的特征共享相同的卷积核参数,这会导致模型在某些情况下无法充分捕捉不同位置的局部差异。

2025-01-18 21:00:51 502

原创 手把手教你使用PySide6搭建AI聊天界面,使用DeepSeek大模型接口

随着深度学习和自然语言处理技术的不断进步,问答系统进入了一个新的发展阶段,能够更加精准地理解复杂问题,支持多种知识形式的表达与多轮对话,从而实现更智能的问答体验。传统的问答方法主要依赖规则库、信息检索技术和浅层机器学习模型,尽管在特定领域中表现较为出色且系统具有较好的解释性,但在处理复杂语义和多轮对话时却显得力不从心。近年来,随着人工智能技术的快速发展,特别是大规模模型的出现,如 chatgpt、DeepSeek 等,迅速火爆整个 AI 圈。

2025-01-18 13:48:58 2446 6

原创 YOLOv10改进,YOLOv10检测头融合RFAConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发

YOLOv10改进,YOLOv10检测头融合RFAConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发

2025-01-17 13:46:05 393

原创 YOLOv11改进,YOLOv11检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务

RFAConv的核心思想是解决卷积神经网络中的卷积核参数共享问题,并通过感受野空间特征提高网络的性能。其创新在于引入了一种新的注意力机制——感受野注意力(RFA),该机制不仅关注空间特征,还有效地解决了大尺寸卷积核的参数共享问题,从而提升了网络的表达能力。核心思想如下:卷积核参数共享问题:在标准卷积中,同一个卷积核的参数被应用于整个图像的不同感受野区域,因此不同位置的特征共享相同的卷积核参数,这会导致模型在某些情况下无法充分捕捉不同位置的局部差异。

2025-01-17 11:17:26 451

原创 YOLOv8改进,YOLOv8检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等

RFAConv的核心思想是解决卷积神经网络中的卷积核参数共享问题,并通过感受野空间特征提高网络的性能。其创新在于引入了一种新的注意力机制——感受野注意力(RFA),该机制不仅关注空间特征,还有效地解决了大尺寸卷积核的参数共享问题,从而提升了网络的表达能力。核心思想如下:卷积核参数共享问题:在标准卷积中,同一个卷积核的参数被应用于整个图像的不同感受野区域,因此不同位置的特征共享相同的卷积核参数,这会导致模型在某些情况下无法充分捕捉不同位置的局部差异。

2025-01-16 17:21:54 312

原创 手把手教你完成YOLOv11 PySide6目标检测界面搭建,使用Qt6设计YOLOv11检测系统,前台系统+后台管理系统开发实战,可用于大论文凑工作量或毕设必备,全网最详细教程

目标检测是计算机视觉中的重要任务,广泛应用于安防监控、自动驾驶、智能家居等领域。YOLO系列模型由于其高效的检测速度和较高的准确率,成为目标检测任务的首选算法之一。本项目结合 YOLOv11 与 PySide6,构建了一个图形化界面,便于用户进行目标检测的操作和展示,实现对图片、视频和摄像头的实时目标检测,不仅可以用于大论文的工作量展示,还可以作为毕业设计。系统功能有:目标检测程序实现图片/视频/摄像头检测,AI 问答界面(deepseek大模型接口,流式输出)、退出登录、界面保存登录状态、个人信息修改等

2025-01-16 11:14:45 728

原创 YOLOv9改进,YOLOv9自研检测头融合HAttention用于图像修复的混合注意力检测头

YOLOv9改进,YOLOv9自研检测头融合HAttention用于图像修复的混合注意力检测头

2025-01-14 16:46:49 324

原创 YOLOv10改进,YOLOv10自研检测头融合HAttention用于图像修复的混合注意力检测头+添加小目标检测层(四头检测)+CA注意机制,全网首发

YOLOv10改进,YOLOv10自研检测头融合HAttention用于图像修复的混合注意力检测头+添加小目标检测层(四头检测)+CA注意机制,全网首发

2025-01-14 15:52:16 126

原创 YOLOv11改进,YOLOv11自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发

YOLOv11改进,YOLOv11自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发

2025-01-12 15:02:12 200

原创 YOLOv8改进,YOLOv8自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发

YOLOv8改进,YOLOv8自研检测头融合HAttention用于图像修复的混合注意力检测头,超分辨率重建,并添加小目标检测层(四头检测),全网首发

2025-01-12 14:49:40 86

原创 YOLOv9改进,YOLOv9引入HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建

HAttention 注意力机制结合了传统的空间注意力和通道注意力,同时引入了一种混合策略来灵活调整两者的权重,旨在更精确地捕捉图像中的重要信息,模型能够在不同层次、不同领域的特征中找到有意义的上下文关联,从而提升图像修复和超分辨率重建的效果。空间注意力主要关注图像中的位置关系。通过计算图像中的每个像素点对目标任务的重要性来调整特征图的空间分布。空间注意力能够帮助模型聚焦于图像中重要的区域,忽略不相关的背景。通道注意力则关注特征图中不同通道的相对重要性。

2025-01-11 12:54:51 94

原创 YOLOv10改进,YOLOv10添加HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建

HAttention 注意力机制结合了传统的空间注意力和通道注意力,同时引入了一种混合策略来灵活调整两者的权重,旨在更精确地捕捉图像中的重要信息,模型能够在不同层次、不同领域的特征中找到有意义的上下文关联,从而提升图像修复和超分辨率重建的效果。空间注意力主要关注图像中的位置关系。通过计算图像中的每个像素点对目标任务的重要性来调整特征图的空间分布。空间注意力能够帮助模型聚焦于图像中重要的区域,忽略不相关的背景。通道注意力则关注特征图中不同通道的相对重要性。

2025-01-11 12:49:03 107

原创 YOLOv11改进,YOLOv11添加HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建

HAttention 注意力机制结合了传统的空间注意力和通道注意力,同时引入了一种混合策略来灵活调整两者的权重,旨在更精确地捕捉图像中的重要信息,模型能够在不同层次、不同领域的特征中找到有意义的上下文关联,从而提升图像修复和超分辨率重建的效果。空间注意力主要关注图像中的位置关系。通过计算图像中的每个像素点对目标任务的重要性来调整特征图的空间分布。空间注意力能够帮助模型聚焦于图像中重要的区域,忽略不相关的背景。通道注意力则关注特征图中不同通道的相对重要性。

2025-01-11 12:45:19 246

原创 YOLOv8改进,YOLOv8引入HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建

HAttention 注意力机制结合了传统的空间注意力和通道注意力,同时引入了一种混合策略来灵活调整两者的权重,旨在更精确地捕捉图像中的重要信息,模型能够在不同层次、不同领域的特征中找到有意义的上下文关联,从而提升图像修复和超分辨率重建的效果。空间注意力主要关注图像中的位置关系。通过计算图像中的每个像素点对目标任务的重要性来调整特征图的空间分布。空间注意力能够帮助模型聚焦于图像中重要的区域,忽略不相关的背景。通道注意力则关注特征图中不同通道的相对重要性。

2025-01-11 11:51:37 106

原创 YOLOv10改进,YOLOv10自研检测头融合HyCTAS的Self_Attention自注意力机制+添加小目标检测层(四头检测)+CA注意机制,全网首发

自注意力(Self-Attention)机制是HyCTAS框架中的一个重要组成部分,是一种能够捕捉输入序列中不同位置之间关系的机制。核心思想是:对于输入的每一个元素,它都会通过与所有其他元素的关系来重新计算自己的表示,这种机制允许网络根据上下文信息动态地调整其对输入各部分的关注程度。在论文中,自注意力模块主要用于捕获长程依赖,这意味着它能够关注输入数据中远离当前位置的相关信息。例如,在图像分割任务中,自注意力模块能够帮助网络理解图像中不同区域之间的关系,提升网络对图像的整体理解能力。

2025-01-10 21:49:21 96

原创 YOLOv9改进,YOLOv9自研检测头融合HyCTAS的Self_Attention自注意力机制,2024,适合目标检测、分割任务

自注意力(Self-Attention)机制是HyCTAS框架中的一个重要组成部分,是一种能够捕捉输入序列中不同位置之间关系的机制。核心思想是:对于输入的每一个元素,它都会通过与所有其他元素的关系来重新计算自己的表示,这种机制允许网络根据上下文信息动态地调整其对输入各部分的关注程度。在论文中,自注意力模块主要用于捕获长程依赖,这意味着它能够关注输入数据中远离当前位置的相关信息。例如,在图像分割任务中,自注意力模块能够帮助网络理解图像中不同区域之间的关系,提升网络对图像的整体理解能力。

2025-01-10 20:58:50 508

原创 YOLOv11改进,YOLOv11自研检测头融合HyCTAS的Self_Attention自注意力机制(2024),并添加小目标检测层(四头检测),适合目标检测、分割、关键点任务

自注意力(Self-Attention)机制是HyCTAS框架中的一个重要组成部分,是一种能够捕捉输入序列中不同位置之间关系的机制。核心思想是:对于输入的每一个元素,它都会通过与所有其他元素的关系来重新计算自己的表示,这种机制允许网络根据上下文信息动态地调整其对输入各部分的关注程度。在论文中,自注意力模块主要用于捕获长程依赖,这意味着它能够关注输入数据中远离当前位置的相关信息。例如,在图像分割任务中,自注意力模块能够帮助网络理解图像中不同区域之间的关系,提升网络对图像的整体理解能力。。

2025-01-10 17:51:37 293

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除