挂科边缘
码龄6年
关注
提问 私信
  • 博客:235,266
    问答:46
    动态:1
    235,313
    总访问量
  • 206
    原创
  • 6,206
    排名
  • 14,615
    粉丝
  • 3,823
    铁粉
  • 学习成就

个人简介:在职AI算法工程师,擅长计算机视觉,YOLO目标检测、分割等,擅长web、pyqt界面可视化,好内容持续更新中,来这里跟大家一起学习,共同进步

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广西
  • 加入CSDN时间: 2019-03-15
博客简介:

weixin_44779079的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    7
    当前总分
    3,464
    当月
    240
个人成就
  • 人工智能领域优质创作者
  • 获得2,373次点赞
  • 内容获得262次评论
  • 获得3,411次收藏
  • 代码片获得28,997次分享
创作历程
  • 157篇
    2024年
  • 49篇
    2023年
成就勋章
  • 入选《人工智能领域内容榜》第9名
TA的专栏
  • YOLOv8改进
    付费
    65篇
  • YOLOv9改进
    付费
    47篇
  • YOLOv10改进
    付费
    32篇
  • MATLAB项目实战
    付费
    42篇
  • yolov8
    4篇
  • 环境安装
    3篇
  • 软件安装
    5篇
  • anaconda疑难杂症
    1篇
  • pthon大作业系列
    4篇
TA的推广
兴趣领域 设置
  • Python
    pythondjango
  • 人工智能
    计算机视觉目标检测人工智能目标跟踪
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

YOLOv9改进 ,YOLOv9改进损失函数采用SlideLoss来处理样本不平衡问题

Slide Loss的核心在于处理样本不平衡问题,对检测中的难易样本进行加权。其主要目的是在训练过程中,将更多的关注放在难样本上,让模型对这些样本的学习更为深入,而不过度关注简单样本。Slide Loss 的设计灵感来源于样本的 IoU 值。易样本:IoU 值高于 µ 的样本。难样本:IoU 值低于 µ 的样本。Slide Loss 的权重设计像“滑梯”形状,对接近阈值 µ 的样本赋予较高权重。赋予低于阈值的难样本较高的权重,使模型在训练时对这些样本更为关注。
原创
发布博客 12 小时前 ·
139 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

基于matlab的CNN食物识别分类系统,matlab深度学习分类,训练+数据集+界面

饮食在人们的日常生活、营养与医疗建议以及运动员等专业人士的训练上起着越来越重要的作用。随着互联网的发展和医学的进步,人们普遍上传分享和记录的食物图像形成了非常多的数据库,为了改善饮食结构,塑造更健康的生活方式,分析食物的种类、热量和进食时间成为了营养学上非常重要的研究方法,本文的使用深度学习算法可以根据用户上传的食物图像自动分析食物种类。深度学习是机器学习领域的一个研究方向。深度学习通过对数据特征的学习将原始数据转化为计算机可以理解的抽象数据,根据学习到的特征,可以对原始数据进行检测或分类。
原创
发布博客 21 小时前 ·
158 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

YOLOv9改进,YOLOv9引入EffectiveSE注意力机制,二次创新RepNCSPELAN4结构

EffectiveSE 模块是改进传统 SE 机制的一个关键组件,解决原始 SE 机制在卷积神经网络(CNN)中可能出现的信息丢失问题。原始的 SE 机制通过学习通道间的依赖关系,对通道进行加权,增强特征图。然而,传统SE模块通过两个全连接(FC)层对通道维度进行压缩再扩展,这一过程可能导致部分通道信息的丢失。而 EffectiveSE 模块的改进简化了这一结构,将原本的两个全连接层替换为一个全连接层,从而避免了通道维度的缩减,保留了原始的通道信息。
原创
发布博客 昨天 13:34 ·
27 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv8改进,YOLOv8改进损失函数采用Inner-IoU,一文构建Inner-SIoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-MDPIoU全文最详细教程

Inner-IoU引入辅助边界框,通过缩放因子生成不同大小的辅助边界框计算损失。小比例的辅助边界框适用于高 IoU 样本,有助于加快收敛,而大比例的辅助边界框适用于低 IoU 样本。Inner-IoU 流程如图所示(图摘自论文):作者通过将 ratio 值设置 0.7 到 0.8 之间小于 1,产生小于实际边框的辅助边框。实验结果证明其能够对高 IoU 样本产生增益。一文构建Inner-SIoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-MDPIoU全文最详细教程
原创
发布博客 昨天 02:43 ·
163 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

YOLOv8/YOLOv11多目标追踪,并手把手教你实现目标追踪轨迹绘制和bytetrack参数解析

YOLOv8/YOLOv11多目标追踪,并手把手教你实现目标追踪轨迹绘制和bytetrack参数解析
原创
发布博客 2024.11.08 ·
828 阅读 ·
11 点赞 ·
2 评论 ·
36 收藏

基于YOLOv8 Web的安全帽佩戴识别检测系统的研究和设计,数据集+训练结果+Web源码

在工地,制造工厂,发电厂等地方,施工人佩戴安全帽能有效降低事故发生概率,在工业制造、发电等领域需要进行施工人员安全帽监测。目前施工监测采用的方案大多是人工巡逻监控和査看监控视频,这类方式往往会出现人力资源消耗大,管理成本高,效率低,漏检和误检概率相对较高的问题。目前大多数的 YOLO 模型还拘泥于公司、企业开发生产的具体产品中,大多数无编程基础的人们并不能直接使用深度学习模型。在手机、电脑人手一台的时代,方便快捷的网页无疑是最好的选择,它不占用任何内存,随用随开。本文设计了一个Web的安全帽佩戴识别检测系统
原创
发布博客 2024.11.06 ·
1162 阅读 ·
33 点赞 ·
2 评论 ·
25 收藏

YOLOv8改进,YOLOv8引入ResCBAM注意力机制,二次创新C2f结构

ResCBAM 模块结合了残差模块和 CBAM,CBAM 首先生成 1D 通道注意力图,然后生成 2D 空间注意力图以增强特征,最终特征通过元素级相加得出,能够更好地聚焦于目标区域,以提升特征表达能力。ResCBAM 工作流程为:输入特征通过 GAP和 GMP 生成不同的空间上下文描述符经过共享的 MLP 后计算出通道注意力图,随后生成空间注意力图最终将输出与输入特征相加形成增强的输出特征。论文地址代码地址下文都是手把手教程,跟着操作即可添加成功。
原创
发布博客 2024.11.04 ·
191 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv8改进,YOLOv8改进损失函数采用SlideLoss来处理样本不平衡问题,助力涨点

Slide Loss的核心在于处理样本不平衡问题,对检测中的难易样本进行加权。其主要目的是在训练过程中,将更多的关注放在难样本上,让模型对这些样本的学习更为深入,而不过度关注简单样本。Slide Loss 的设计灵感来源于样本的 IoU 值。易样本:IoU 值高于 µ 的样本。难样本:IoU 值低于 µ 的样本。Slide Loss 的权重设计像“滑梯”形状,对接近阈值 µ 的样本赋予较高权重。赋予低于阈值的难样本较高的权重,使模型在训练时对这些样本更为关注。
原创
发布博客 2024.11.01 ·
121 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

YOLOv8改进,YOLOv8采用RT-DETR检测头,CVPR 2024

RT-DETR(Real-Time DEtection TRansformer)的核心思想是将 Transformer 架构应用于实时目标检测中,并通过改进编码器和解码器的结构,提升检测速度和准确性,从而超越传统的YOLO系列模型。RT-DETR核心细节:高效的混合编码器:RT-DETR提出了一种高效的混合编码器,通过解耦不同尺度特征的交互,减少了计算冗余。
原创
发布博客 2024.10.24 ·
152 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv8改进,YOLOv8引入EffectiveSE注意力机制,二次创新C2f结构

EffectiveSE 模块是改进传统 SE 机制的一个关键组件,解决原始 SE 机制在卷积神经网络(CNN)中可能出现的信息丢失问题。原始的 SE 机制通过学习通道间的依赖关系,对通道进行加权,增强特征图。然而,传统SE模块通过两个全连接(FC)层对通道维度进行压缩再扩展,这一过程可能导致部分通道信息的丢失。而 EffectiveSE 模块的改进简化了这一结构,将原本的两个全连接层替换为一个全连接层,从而避免了通道维度的缩减,保留了原始的通道信息。
原创
发布博客 2024.10.24 ·
124 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

YOLOv9改进,YOLOv9引入FLAttention注意力机制(ICCV2023),并二次创新RepNCSPELAN4结构

通过引入一种新的线性注意力机制,称为Focused Linear Attention,来解决现有线性注意力方法在视觉任务中的性能下降问题,传统的自注意力机制具有二次计算复杂度,在处理长序列时非常耗费计算资源。而线性注意力通过减少计算复杂度来解决这个问题,但通常会带来性能下降或引入额外的计算开销。Focused Linear Attention 通过两方面的改进来提高性能:关注能力(Focus Ability):传统线性注意力的权重分布过于平滑,无法有效关注到关键信息。
原创
发布博客 2024.10.23 ·
89 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv8改进,YOLOv8引入ASFF检测头(自适应空间特征融合)

目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适应融合权重,过滤掉无用的或冲突的信息,只保留有助于检测的特征,从而提高特征的尺度不变性。ASFF核心步骤如下:特征重缩放:首先将不同层次的特征进行上采样或下采样,使它们具有相同的分辨率。
原创
发布博客 2024.10.23 ·
186 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv9改进,YOLOv9引入WTConv卷积(ECCV 2024),二次创新RepNCSPELAN4结构

WTConv 的核心思想是通过结合卷积神经网络(CNN)的强大特征提取能力与小波变换的多尺度特性,来实现大感受野的卷积操作,同时避免传统大卷积核带来的参数爆炸问题。传统的卷积操作通过滑动小窗口在图像上逐步执行局部特征提取,感受野的大小直接取决于卷积核的尺寸。随着卷积核的增大,参数量呈指数增长,导致网络训练效率降低、计算资源消耗增加。为解决这些问题,WTConv 提出了在小波域中执行卷积操作的策略。小波变换是一种常用于信号处理的技术,能够将信号分解为不同频率成分。
原创
发布博客 2024.10.23 ·
106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv8改进,YOLOv8引入Focused Linear Attention注意力机制(ICCV2023),二次创新C2f结构

通过引入一种新的线性注意力机制,称为Focused Linear Attention,来解决现有线性注意力方法在视觉任务中的性能下降问题,传统的自注意力机制具有二次计算复杂度,在处理长序列时非常耗费计算资源。而线性注意力通过减少计算复杂度来解决这个问题,但通常会带来性能下降或引入额外的计算开销。Focused Linear Attention 通过两方面的改进来提高性能:关注能力(Focus Ability):传统线性注意力的权重分布过于平滑,无法有效关注到关键信息。
原创
发布博客 2024.10.23 ·
97 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

YOLO目标检测理论详解,YOLOv1理论知识讲解,超w字精读(学习YOLO框架必备),全网最详细教程

对于初学者的你来说,选择适合的论文、选择通俗易懂又全面的科普文章等,具有太多的偶然性。如果迟迟没有找到合适的文章,那就不能理解什么是 YOLO 检测器,什么又是 Detection with Transformers 框架。对于小白来说,直接上手开源项目难道比较大,而且网上直接带你上手的 YOLO 项目很多,虽然能明白一套训练流程和推理流程,但对于一些 YOLO 模型理论、损失函数和整体框架逻辑显得茫然不知,因此,这期文章我会一步一步带你了解 YOLO 目标检测理论,让你快速上手 YOLO。
原创
发布博客 2024.10.22 ·
2336 阅读 ·
73 点赞 ·
4 评论 ·
34 收藏

YOLOv8改进,YOLOv8采用WTConv卷积(感受野的小波卷积),二次创新C2f结构,ECCV 2024

WTConv 的核心思想是通过结合卷积神经网络(CNN)的强大特征提取能力与小波变换的多尺度特性,来实现大感受野的卷积操作,同时避免传统大卷积核带来的参数爆炸问题。传统的卷积操作通过滑动小窗口在图像上逐步执行局部特征提取,感受野的大小直接取决于卷积核的尺寸。随着卷积核的增大,参数量呈指数增长,导致网络训练效率降低、计算资源消耗增加。为解决这些问题,WTConv 提出了在小波域中执行卷积操作的策略。小波变换是一种常用于信号处理的技术,能够将信号分解为不同频率成分。
原创
发布博客 2024.10.22 ·
177 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOv10改进,YOLOv10二次创新C2f结构采用WTConv卷积(感受野的小波卷积),ECCV 2024

WTConv 的核心思想是通过结合卷积神经网络(CNN)的强大特征提取能力与小波变换的多尺度特性,来实现大感受野的卷积操作,同时避免传统大卷积核带来的参数爆炸问题。传统的卷积操作通过滑动小窗口在图像上逐步执行局部特征提取,感受野的大小直接取决于卷积核的尺寸。随着卷积核的增大,参数量呈指数增长,导致网络训练效率降低、计算资源消耗增加。为解决这些问题,WTConv 提出了在小波域中执行卷积操作的策略。小波变换是一种常用于信号处理的技术,能够将信号分解为不同频率成分。
原创
发布博客 2024.10.20 ·
188 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

网络协议ensp这个怎么做?

答:
  1. 设备和拓扑设计

你可以参考给出的拓扑图,但你需要按照项目的需求做一些调整:

每层大楼10间教室,每间教室有50台电脑、2台无线AP、2台网络摄像头。这些设备将通过S5560-54F-EI-G交换机连接到汇聚层。
确保交换机有足够的冗余端口(至少预留2-4个)。
无线AP采用PoE供电,确保PoE接口的配置。
  1. 接入层交换机配置

    VLAN规划:可以为每个教室创建一个VLAN,便于流量隔离。比如:

     1楼教室1:VLAN 101
     1楼教室2:VLAN 102
     以此类推,规划每个教室一个独立的VLAN。
    

    边缘端口+BPDU保护:启用生成树协议(RSTP或MSTP),并设置BPDU保护,防止外部设备引入环路。

  2. 汇聚层和核心层

    汇聚层设备:S6650X-56HF-HI交换机,需要考虑链路冗余,建议使用链路聚合(Link Aggregation)进行双上行连接接入层。
    核心层设备:使用S56-80路由器,采用路由冗余策略,可以选择OSPF或BGP协议来确保核心路由的冗余和备份。

  3. VLAN划分及路由策略

    教师机和学生机的VLAN可以分开,例如教师机在VLAN 200,学生机在VLAN 100。
    教师机可以访问教育专网,但学生机不能,因此需要在核心层配置路由策略(Route-Policy)来限制学生机的访问。
    服务器区:使用核心层设备的高速转发,不需要设置过多策略。

  4. 网络安全和出口设计

    对于互联网和教育专网的两个出口,建议配置防火墙和访问控制列表(ACL),以确保流量的安全隔离。

  5. 其他配置

    IRF(智能弹性架构)可以在汇聚层设备上实现虚拟化技术,确保冗余。
    启用M-LAG(多点链路聚合)在多个设备间实现链路冗余。

具体步骤:

  1. VLAN配置:你可以为不同的设备规划不同的VLAN(学生机、教师机、AP等),并为每个交换机接口分配合适的VLAN。
  2. 生成树协议:在每个交换机上启用RSTP,并配置边缘端口和BPDU保护。
  3. 链路聚合配置:在汇聚层与接入层之间建立双上行链路,使用链路聚合(LACP)。
  4. OSPF/BGP配置:核心层与汇聚层之间使用OSPF或BGP进行路由冗余配置。
  5. ACL配置:使用ACL来限制学生机的流量访问。
  6. PoE配置:确保无线AP的端口启用PoE供电。
回答问题 2024.10.19

YOLOv8/YOLOv11使用web界面推理自己的模型,Gradio框架快速搭建

Gradio 是一个开源 Python 库,用于快速构建和共享机器学习模型的 Web 界面。开发者可以通过简单的 Python 代码将机器学习模型封装成交互式应用,无需复杂的设置即可在浏览器中使用自己训练好模型。接下来教你使用 Gradio 框架构建一个简单 Web 界面推理 YOLOv8/YOLOv11 模型
原创
发布博客 2024.10.15 ·
365 阅读 ·
5 点赞 ·
1 评论 ·
1 收藏

YOLOv10使用web界面推理,app.py完美运行,全网最详细教程

Gradio 是一个开源 Python 库,用于快速构建和共享机器学习模型的 Web 界面。开发者可以通过简单的 Python 代码将机器学习模型封装成交互式应用,无需复杂的设置即可在浏览器中使用自己训练好模型。接下来手把手教你运行 YOLOv10 的一个简单 Web 界面推理自己的模型
原创
发布博客 2024.10.15 ·
350 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏
加载更多