YOLOv8改进系列,YOLOv8主干网络引入Retinexformer,用于低光照物体检测


在这里插入图片描述

原论文摘要

在增强低光照图像时,许多深度学习算法基于Retinex理论。然而,Retinex模型没有考虑隐藏在黑暗中或由照亮过程引入的损坏。此外,这些方法通常需要繁琐的多阶段训练流程,并依赖于卷积神经网络,显示出在捕获长程依赖关系方面的局限性。在本文中,提出了一个简单但原则性明确的一阶段Retinex基础框架(ORF)。ORF首先估计照明信息以照亮低光照图像,然后恢复损坏以生成增强图像。我们设计了一个照明引导变换器(IGT),利用照明表示来指导不同光照条件区域的非局部交互建模。通过将IGT插入ORF,即Retinexformer。全面的定量和定性实验表明,Retinexformer在十三个基准测试上显著优于最新的方法。用户研究和低光照物体检测应用也揭示了Retinexformer方法的潜在实用价值。

介绍

该方法的整体架构,正如图(a)所示,我们的Retinexformer基于我们提出的一阶段Retinex框架(ORF)。ORF由一个照明估计器(i)和一个损坏恢复器(ii)组成。我们设计了一个照明引导变换器(IGT)作为损坏恢复器。图(b)中描述了IGT的基本单元是照明引导注意力块(IGAB),它由两个层归一化(LN)、一个照明引导多头自注意力(IG-MSA)模块和一个前馈网络(FFN)组成。图©展示了IG-MSA的细节。
在这里插入图片描述

(a) Retinexformer采用了所提出的ORF框架,该框架由一个照明估计器(i)和一个损坏恢复器(ii) IGT组成。(b) IGT的基本单元是IGAB,它由两个层归一化(LN)、一个IG-MSA和一个前馈网络(FFN)组成。© IG-MSA使用由ORF捕获的照明表示来指导自注意力的计算。

理论详解可以参考链接:论文地址
代码可在这个链接找到:论文地址

本文在YOLOv8中的主干网络引入Retinexformer,用于低光照物体检测,代码已经整理好了,跟着文章复制粘贴,即可直接运行


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值