最小路径和

问题描述

给定一个非负整数填充的m*n的二维数组, 现在要从二维数组的左上角走到右下角, 请找出路径上的所有数字之和的最小路径
注意: 每次只能向下或向右移动

用F(i, j)表示从(0, 0)到(i, j)的的最短路径

F(i, j) = min(F(i, j - 1), F(i - 1, j)) + (i, j)

注意初始化: 第0行, 第0列
F(0, i) = F(0, i - 1) + (0, i)
F(i, 0) = F(i - 1, 0) + (i, 0)

代码如下

class Solution {
public:
	int minPathSum(vector<vector<int> > &grid) {
		int row = grid.size();
		int col = grid[0].size();

		for (int i = 1; i < col; ++i)
		{
			grid[0][i] += grid[0][i - 1];
		}
		for (int j = 1; j < row; ++j)
		{
			grid[j][0] += grid[j - 1][0];
		}
		for (int i = 1; i < row; ++i)
		{
			for (int j = 1; j < col; ++j)
			{
				grid[i][j] = min(grid[i][j - 1], grid[i - 1][j]) + grid[i][j];
			}
		}
		return grid[row - 1][col - 1];
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值