weixin_44781508
码龄6年
关注
提问 私信
  • 博客:26,596
    26,596
    总访问量
  • 44
    原创
  • 175,682
    排名
  • 289
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-03-15
博客简介:

weixin_44781508的博客

博客描述:
123
查看详细资料
  • 原力等级
    当前等级
    3
    当前总分
    441
    当月
    2
个人成就
  • 获得194次点赞
  • 内容获得29次评论
  • 获得226次收藏
  • 代码片获得448次分享
创作历程
  • 17篇
    2024年
  • 25篇
    2023年
  • 2篇
    2022年
成就勋章
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【ZYNQ】AXI-Quad-SPI SDK 开发记录 测试

代码中,摁住ctrl+左键 可以跳转到函数的定义,XSpi_ReadReg 就是寄存器读,通过基地址+偏移地址。如果接收的寄存器不是空的了,(说明有数据来了),就把DRR接收data寄存器的数据读到fifo缓存里面。3.检查状态寄存器SR,把缓存fifo发到tx的data寄存器(DTR)当发射tx 的fifo没有满的时候,把发射数据写进去。SR状态寄存器,读取SR寄存器32bit内容。4.开启spi设备,CR使能,CR清楚禁止位。最低位,LOOP 是否回环,默认0,不回环。2.定义缓存fifo。
原创
发布博客 2024.05.24 ·
1099 阅读 ·
5 点赞 ·
1 评论 ·
19 收藏

vivado spi axiIP核控制 pynqz2

生成block 打开RTL ANALYSIS 然后 上面Winow打开 IO PORT分配端口。GPIO 和EMIO都开启。PL端时钟给80MHz。
原创
发布博客 2024.05.23 ·
356 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

第2.6讲 GPIO之MIO控制LED实验程序设计 36:24

查看【XGpioPs_SetDirectionPin】函数,在【xgpiops.c里面】ZYNQ7020 芯片的 BANK35 内,该 BANK 的供电电压为 3.3V。用的vitis 2019.2 步骤不一样,要新建一个工程,读入xsa,上面生成的。然后Bank500有16个IO口,Bank501有38个IO口,共54个;读取的xsa文件是vivado生成的wrapper,每次生成的都不一样。需要注意板子上的跳线帽,启动不是SD启动,是JTAG启动。右键,端口,选择make external。
原创
发布博客 2024.05.23 ·
979 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

pynq7020系列的资源有多少

查找表107,273 39.14 140,537 51.28查找表随机存储器17,457 12.12 19,524 13.56触发器67,278 12.27 81,453 14.95 Block RAMs ( 36 KB ) 264.5 29.00 457 50.11。pynq系列的资源有多少。Table 1: Zynq-7000 and Zynq-7000S SoCs (Cont'd)oo edemmeoDevice NameZ-7007S Z-7012S Z-7014SXC7Z012SXC7Z014SX
原创
发布博客 2024.05.07 ·
508 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

谷歌TPU(Tensor Processing Unit)

当客户使用更大的切片时,它还可以实现吞吐量的近线性改进,在切片大小增加 12 倍(从 512 个芯片到 6144 个芯片)的情况下实现 11.97 倍的吞吐量。TPU是用于神经网络工作负载的矩阵处理的专用集成电路(ASIC),TPU 的主要任务是矩阵处理,这是乘法和累加运算的组合。利用这种混合连接,Multislice 可实现多个切片的并行性,并且允许您为单个作业使用的 TPU 核心数量超出单个切片能够容纳的 TPU 核心数量。TPU Pod 中的 TPU 芯片的数量取决于 TPU 版本。
原创
发布博客 2024.04.26 ·
1542 阅读 ·
8 点赞 ·
3 评论 ·
8 收藏

Google Cloud 的 AI 超计算机架构的新增功能

我们利用 Nvidia NeMo 框架用于构建我们的工业实力模型,每秒生成 990,000 个单词,每月执行超过一万亿次 API 调用,我们提供的推理模型质量超过了拥有更大团队和预算的公司的模型,而所有这一切都可以通过 NeMo 框架来构建。在本周的 Next 大会上,我们将推出令人难以置信的 AI 创新,涵盖从 AI 平台和模型到 Gemini for Google Cloud 的 AI 辅助等各个方面,所有这些都以 AI 优化的基础设施为基础。所有这些创新都为我们的客户带来了令人难以置信的动力。
原创
发布博客 2024.04.26 ·
1022 阅读 ·
19 点赞 ·
0 评论 ·
10 收藏

查看snn+transformer的网络内容

【代码】查看snn+transformer的网络内容。
原创
发布博客 2024.04.24 ·
257 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

cifar10训练结果

【代码】cifar10训练结果。
原创
发布博客 2024.04.24 ·
135 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

spikingjelly训练自己的网络---量化 --测试

我又提问了我要在这个上面进行16比特量化的修改,应该怎么修改?def。
原创
发布博客 2024.04.09 ·
476 阅读 ·
8 点赞 ·
0 评论 ·
2 收藏

spikingjelly学习-训练网络

 脉冲神经元的输出是二值的,而直接将单次运行的结果用于分类极易受到编码带来的噪声干扰。【在PyTorch中,钩子(hooks)是一种强大的工具,允许你在模型的前向传播(forward pass)或反向传播(backward pass)过程中插入自定义操作。就这个网络而言,只需要先去掉所有的激活函数,再将尖峰神经元添加到原来激活函数的位置,这里我们选择的是LIF神经元。在提供的代码段中,使用了一个前向钩子(save_hook)来保存神经网络某层在前向传播过程中的电压值(v)和脉冲值(s)。
原创
发布博客 2024.04.09 ·
1172 阅读 ·
25 点赞 ·
0 评论 ·
11 收藏

spikingjelly学习-使用单层全连接snn脉冲神经网络识别mnist数据集2,画图片

对应代码【https://spikingjelly.readthedocs.io/zh-cn/0.0.0.0.14/activation_based/lif_fc_mnist.html】
原创
发布博客 2024.03.25 ·
340 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

spikingjelly学习-使用单层全连接snn脉冲神经网络识别mnist数据集

脉冲神经元的输出是二值的,而直接将单次运行的结果用于分类极易受到编码带来的噪声干扰。因此一般认为脉冲网络的输出是输出层一段时间内的发放频率(或称发放率),发放率的高低表示该类别的响应大小。连接【https://spikingjelly.readthedocs.io/zh-cn/0.0.0.0.14/activation_based/lif_fc_mnist.html】【另外由于我们使用了泊松编码器,因此需要较大的 T保证编码带来的噪声不太大。每次网络仿真结束后,需要重置网络状态】
原创
发布博客 2024.03.25 ·
951 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

spikingjelly学习-梯度替代

直接使用冲激函数进行梯度下降,显然会使得网络的训练及其不稳定。对应地址【https://spikingjelly.readthedocs.io/zh-cn/0.0.0.0.14/activation_based/surrogate.html#】【SpikingJelly中替代函数的形状参数,默认情况下是使得替代函数梯度最大值为1,这在一定程度上可以避免梯度累乘导致的梯度爆炸问题。【在 神经元 中我们已经提到过,描述神经元放电过程的。
原创
发布博客 2024.03.22 ·
521 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

spikingjelly学习-监视器

可能的解释是,记录的发射率并不直接对应于每个IF层的神经元数量,而是反映了某种形式的平均或汇总统计信息,或者是由于代码中的逻辑错误导致错误地记录了数据。【x_seq是一个形状为[T, N, *]的张量,其中T=4表示时间步数,N=1表示批次大小,*表示输入特征的维度,这里是8。这里的确出现了一个不一致性,因为根据网络结构,第一个IF层的发射率应该是针对4个神经元的,而第二个IF层的发射率应该是针对2个神经元的。第一个IF层的发射率记录应该反映4个神经元的平均发射率,因此形状为[4]是合理的。
原创
发布博客 2024.03.22 ·
1210 阅读 ·
16 点赞 ·
0 评论 ·
17 收藏

spikingjelly学习-包装器

【常用的网络层,在 spikingjelly.activation_based.layer 已经定义过,更推荐使用 spikingjelly.activation_based.layer 中的网络层,而不是使用 SeqToANNContainer 手动包装,尽管 spikingjelly.activation_based.layer 中的网络层实际上就是用包装器包装 forward 函数实现的。StepModeContainer:这是一个更通用的包装器,它允许你控制包装的模块是以单步模式还是多步模式运行。
原创
发布博客 2024.03.21 ·
1093 阅读 ·
22 点赞 ·
0 评论 ·
24 收藏

spikingjelly学习-神经元

【surrogate_function() 在前向传播时是阶跃函数,只要输入大于或等于0,就会返回1,否则会返回0。print(torch.cuda.is_available()) # 查看当前cuda是否可用于当前版本的Torch,如果输出True,则表示可用。【释放脉冲消耗了神经元之前积累的电荷,因此膜电位会有一个瞬间的降低,即膜电位的重置。print(torch.version.cuda) # 编译当前版本的torch使用的cuda版本号。Soft方式:释放脉冲后,膜电位减去阈值电压:】
原创
发布博客 2024.03.21 ·
372 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

spikingjelly学习-基本概念

在内存受限时使用逐步传播,例如ANN2SNN任务中需要用到非常大的 T。因为在逐层传播模式下,对无状态的层而言,真正的 batch size 是 TN 而不是 N (参见下一个教程),当 T 太大时内存消耗极大。对应内容【https://spikingjelly.readthedocs.io/zh-cn/0.0.0.0.14/activation_based/basic_concept.html#】在使用梯度替代法训练时,通常推荐使用逐层传播。在正确构建网络的情况下,逐层传播的并行度更大,速度更快。
原创
发布博客 2024.03.14 ·
595 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏

Fatal: Internal system error, cannot recover. The tool has just encountered a fatal error: If you

原因综合脚本改成compile ultra之后compile ultra -incremental,.sdc里面增加了对纯组合逻辑的时序约束,以及增加了对时序约束时钟树设置setidealnetwork和set dont touch的命令。dc综合报错,在使用dw工具的时候。
原创
发布博客 2023.11.07 ·
1136 阅读 ·
0 点赞 ·
3 评论 ·
1 收藏

Illegal use of tristate value. (ELAB-306) dw综合问题

定义头文件,应该用xxx的不定态。
原创
发布博客 2023.11.06 ·
137 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Syntax error at or near token ‘packed‘. (VER-294) Syntax error at or near token ‘clk‘. (VER-294)Rede

因为在读文件的时候不认识logic,应该是在提取文件的时候,应该用sv来提取。
原创
发布博客 2023.11.06 ·
647 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏
加载更多