SophonSDK的一些术语说明

术语说明
BM1684X算能科技面向深度学习领域推出的第四代张量处理器
BM1684算能科技面向深度学习领域推出的第三代张量处理器
TPUBM1684芯片中的神经网络运算单元
VPUBM1684芯片中的解码单元
VPPBM1684芯片中的图形运算加速单元
JPUBM1684芯片中的图像jpeg编解码单元
BMNNSDK2算能科技基于BM1684芯片的原创深度学习开发工具包v2
SophonSDK算能科技基于BM168X芯片的原创深度学习开发工具包,v3.0.0开始更名为SophonSDK
PCIE ModeBM1684的一种工作形态,芯片作为加速设备来进行使用,客户算法运行于x86主机
SoC ModeBM1684的一种工作形态,芯片本身作为主机独立运行,客户算法可以直接运行其上
CModelBM1684软件模拟器,包含于BMNNSDK2中,在不具备 TPU 硬件设备的情况 下,可用于验证 BMNNSDK2编译及完成模型转换
arm_pcie ModeBM1684的一种工作形态,搭载芯片的板卡作为PCIe从设备插到ARM cpu的服务器上,客户算法运行于ARM cpu的主机上
BMCompiler面向算能科技TPU 处理器研发的深度神经网络的优化编译器,可以将深度学习框架定义的各种深度神经网络转化为 TPU 上运行的指令流
BMRuntimeTPU推理接口库
BMCV图形运算硬件加速接口库
BMLib在内核驱动之上封装的一层底层软件库,设备管理、内存管理、数据搬运、API发 送、A53使能、功耗控制
UFramework(ufw)算能自定义的基于Caffe的深度学习推理框架,用于将模型与原始框架解耦以便验证模型转换精度和完成量化
BMNetC面向Caffe的 BMCompiler 前端工具
BMNetD面向Darknet的BMCompiler前端工具
BMNetM面向MxNet的 BMCompiler 前端工具
BMNetO面向ONNX的BMCompiler前端工具
BMNetP面向PyTorch的 BMCompiler 前端工具
BMNetT面向TensorFlow的BMCompiler 前端工具
BMNetUINT8量化模型的BMCompiler前端工具
BMPaddle面向Paddle Paddle的BMCompiler前端工具
Umodel算能自定义的UFamework下的模型格式,为量化模型时使用的中间模型格式
BModel
BMLang面向TPU的高级编程模型,用户开发时无需了解底层TPU硬件信息
TPUKernel(OKKernel,BMKernel)基于TPU原子操作(根据芯片指令集封装的一套接口)的开发库,需熟悉芯片架构、存储细节
SAIL支持Python/C++接口的Sophon Inference推理库,是对BMCV、BMDecoder、 BMLib、BMRuntime等的进一步封装
winograd一种卷积的加速算法
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeepLinkDeepLink

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值