术语 | 说明 |
---|---|
BM1684X | 算能科技面向深度学习领域推出的第四代张量处理器 |
BM1684 | 算能科技面向深度学习领域推出的第三代张量处理器 |
TPU | BM1684芯片中的神经网络运算单元 |
VPU | BM1684芯片中的解码单元 |
VPP | BM1684芯片中的图形运算加速单元 |
JPU | BM1684芯片中的图像jpeg编解码单元 |
BMNNSDK2 | 算能科技基于BM1684芯片的原创深度学习开发工具包v2 |
SophonSDK | 算能科技基于BM168X芯片的原创深度学习开发工具包,v3.0.0开始更名为SophonSDK |
PCIE Mode | BM1684的一种工作形态,芯片作为加速设备来进行使用,客户算法运行于x86主机 |
SoC Mode | BM1684的一种工作形态,芯片本身作为主机独立运行,客户算法可以直接运行其上 |
CModel | BM1684软件模拟器,包含于BMNNSDK2中,在不具备 TPU 硬件设备的情况 下,可用于验证 BMNNSDK2编译及完成模型转换 |
arm_pcie Mode | BM1684的一种工作形态,搭载芯片的板卡作为PCIe从设备插到ARM cpu的服务器上,客户算法运行于ARM cpu的主机上 |
BMCompiler | 面向算能科技TPU 处理器研发的深度神经网络的优化编译器,可以将深度学习框架定义的各种深度神经网络转化为 TPU 上运行的指令流 |
BMRuntime | TPU推理接口库 |
BMCV | 图形运算硬件加速接口库 |
BMLib | 在内核驱动之上封装的一层底层软件库,设备管理、内存管理、数据搬运、API发 送、A53使能、功耗控制 |
UFramework(ufw) | 算能自定义的基于Caffe的深度学习推理框架,用于将模型与原始框架解耦以便验证模型转换精度和完成量化 |
BMNetC | 面向Caffe的 BMCompiler 前端工具 |
BMNetD | 面向Darknet的BMCompiler前端工具 |
BMNetM | 面向MxNet的 BMCompiler 前端工具 |
BMNetO | 面向ONNX的BMCompiler前端工具 |
BMNetP | 面向PyTorch的 BMCompiler 前端工具 |
BMNetT | 面向TensorFlow的BMCompiler 前端工具 |
BMNetU | INT8量化模型的BMCompiler前端工具 |
BMPaddle | 面向Paddle Paddle的BMCompiler前端工具 |
Umodel | 算能自定义的UFamework下的模型格式,为量化模型时使用的中间模型格式 |
BModel | |
BMLang | 面向TPU的高级编程模型,用户开发时无需了解底层TPU硬件信息 |
TPUKernel(OKKernel,BMKernel) | 基于TPU原子操作(根据芯片指令集封装的一套接口)的开发库,需熟悉芯片架构、存储细节 |
SAIL | 支持Python/C++接口的Sophon Inference推理库,是对BMCV、BMDecoder、 BMLib、BMRuntime等的进一步封装 |
winograd | 一种卷积的加速算法 |