算法模型
文章平均质量分 80
IT之一小佬
敲响键盘之乐,跳起程序之舞,抵达智慧之巅!
展开
-
BERT模型的详细介绍
BERT模型的详细介绍1.BERT 的基本原理是什么?BERT 来自 Google 的论文Pre-training of Deep Bidirectional Transformers for Language Understanding,BERT 是“Bidirectional Encoder Representations from Transformers”的首字母缩写,整体是一个自编码语言模型(Autoencoder LM),并且其设计了两个任务来预训练该模型。 第一个任务是采用 Ma原创 2021-04-01 16:42:14 · 117496 阅读 · 10 评论 -
图神经网络方法总结(Graph Neural Network)
图神经网络方法(Graph Neural Network)概要近年来图神经网络受到大家越来越多的关注,在文本分类(Text classification),序列标注(Sequence labeling), 神经机器翻译(Neural machine translation),关系抽取(Relation extraction),事件抽取(Event extraction), 图像分类(Image Classification),视觉推理(Visual Reasoning),语义分割(Semantic原创 2021-03-31 19:16:30 · 1152 阅读 · 0 评论 -
Tree-Structured LSTM模型
Tree-Structured LSTM模型论文概要由于能够保持按照时序的序列信息,LSTM(Long Short-Term Memory)网络在序列模型任务上能够有非常好的表现。但是该模型只能输入线型的序列,对于树型的输入(比如依赖树)无法很好的处理,由此,论文提出两种Tree-LSTM的模型,将LSTM拓展到树型的输入结构上,并在两个任务:预测语义相关性和语义分类任务上超过所有现存模型。模型介绍和比较大多数短语或句子的分布式表示分为三类:bag-of-words模型、sequence模型原创 2021-03-16 17:04:16 · 1184 阅读 · 1 评论