39. 组合总和
本题是 集合里元素可以用无数次,那么和组合问题的差别 其实仅在于 startIndex上的控制。
class Solution {
private List<Integer> path = new ArrayList<>();
private List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> combinationSum(int[] candidates, int target) {
backtracking(candidates,target,0,0);
return res;
}
public void backtracking(int[] candidates, int target, int sum, int startIndex){
if(sum==target){
res.add(new ArrayList<>(path));
return;
}
if(sum>target || startIndex>=candidates.length) return;//注意,这里要做剪枝,不然会栈溢出
for(int i=startIndex;i<candidates.length;i++){
path.add(candidates[i]);
backtracking(candidates,target,sum+candidates[i],i);//可重复
path.remove(path.size()-1);
}
}
}
时间复杂度: O(n * 2^n),注意这只是复杂度的上界,因为剪枝的存在,真实的时间复杂度远小于此
空间复杂度: O(target)
40.组合总和II
这道题的重点是如何去重,参考15.三树之和的思想,需要去掉nums[index]=nums[index-1]的情况。也就是横向遍历中遇到和前一个相同的节点,就直接跳过,但向下递归可以出现重复。
要注意的是这里的去重是在for循环里的,而不是外面。
class Solution {
private List<List<Integer>> res=new ArrayList<>();
private List<Integer> path=new ArrayList<>();
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
Arrays.sort(candidates);
backtracking(candidates,target,0,0);
return res;
}
public void backtracking(int[] candidates, int target,int startIndex,int sum){
if(sum>target) return;
if(sum==target){
res.add(new ArrayList<>(path));
return;
}
for(int i=startIndex;i<candidates.length;i++){
if(i>startIndex && candidates[i]==candidates[i-1]) continue;//去重
path.add(candidates[i]);
backtracking(candidates,target,i+1,sum+candidates[i]);
path.remove(path.size()-1);
}
}
}
时间复杂度: O(n * 2^n)
空间复杂度: O(n)
131.分割回文串
本题主要有以下几个注意点:
1、要明白字符串的分割怎么等同于前面的组合。startIndex表示的是分割的位置。
2、分割时要明确左闭右闭区间。
class Solution {
private List<List<String>> res=new ArrayList<>();
private List<String> path=new ArrayList<>();
public List<List<String>> partition(String s) {
backtracking(s,0);
return(res);
}
public void backtracking(String s,int startIndex){
if(startIndex>=s.length()){
res.add(new ArrayList<>(path));
return;
}
for(int i=startIndex;i<s.length();i++){//左闭右闭区间
if(isPalindrome(s,startIndex,i)){
path.add(s.substring(startIndex,i+1));
backtracking(s,i+1);
path.remove(path.size()-1);
}else{
continue;
}
}
}
public boolean isPalindrome(String s, int startIndex, int i){
int left=startIndex;
int right=i;
while(left<right){
if(s.charAt(left)!=s.charAt(right)){
return false;
}
left++;
right--;
}
return true;
}
}
时间复杂度: O(n * 2^n)
空间复杂度: O(n^2)