背景
用于批量格式化数据,背景就是领导给我我一张下面这样的表格,其中启用日期是五花八门的格式,大概有几万行,需要把启用日期一列统一格式化为“YYYY-MM-DD”的格式,显然,针对这种格式不统一的数据,用Excel处理很费劲。
生产厂家 | 启用日期 |
---|---|
赛默飞 | 2021.12.28 |
赛默飞 | 20190515 |
赛默飞 | 2013/3/30 |
赛默飞 | 2011-3 |
安捷伦 | 2012.8.10 |
安捷伦 | 2015.02.09 |
安捷伦 | 2020/10/1 |
安捷伦 | 20200708 |
初步解决方案
让AI处理,结果AI处理了几百行后告诉我太多了,它不干了,我再问就直接丢给我一段Python代码,果断引入依赖,稍微调了调,勉强能够完成工作。
import pandas as pd
from datetime import datetime
# 读取Excel文件
input_file = 'C:\\Users\\Aerle\\Desktop\\日期数据.xlsx' # 假设您的Excel文件名是input.xlsx
output_file = 'C:\\Users\\Aerle\\Desktop\\格式化后的结果.xlsx' # 转换后的数据将保存到这个文件中
df = pd.read_excel(input_file, header=None) # 假设数据在第一个工作表,且没有列标题
# 定义一个函数来解析和格式化日期
def format_date(date_str):
# 尝试多种可能的日期格式来解析字符串
formats = ['%Y%m%d', '%Y.%m.%d', '%Y/%m/%d', '%Y-%m', '%Y/%m/%d','%Y.%m','%Y-%m-%d']
for fmt in formats:
try:
# 解析日期字符串
date = datetime.strptime(date_str, fmt)
# 格式化为YYYY-MM-dd
return date.strftime('%Y-%m-%d')
except ValueError:
pass # 如果当前格式不匹配,则尝试下一个格式
return None # 如果所有格式都不匹配,则返回None
# 应用函数到数据列的每一个元素
df[0] = df[0].apply(format_date)
# 将结果输出到一个新的Excel工作表中
df.to_excel(output_file,