Python-批量日期数据格式化处理

日期批量格式化

背景

用于批量格式化数据,背景就是领导给我我一张下面这样的表格,其中启用日期是五花八门的格式,大概有几万行,需要把启用日期一列统一格式化为“YYYY-MM-DD”的格式,显然,针对这种格式不统一的数据,用Excel处理很费劲。

生产厂家 启用日期
赛默飞 2021.12.28
赛默飞 20190515
赛默飞 2013/3/30
赛默飞 2011-3
安捷伦 2012.8.10
安捷伦 2015.02.09
安捷伦 2020/10/1
安捷伦 20200708

初步解决方案

让AI处理,结果AI处理了几百行后告诉我太多了,它不干了,我再问就直接丢给我一段Python代码,果断引入依赖,稍微调了调,勉强能够完成工作。

import pandas as pd
from datetime import datetime

# 读取Excel文件
input_file = 'C:\\Users\\Aerle\\Desktop\\日期数据.xlsx'  # 假设您的Excel文件名是input.xlsx
output_file = 'C:\\Users\\Aerle\\Desktop\\格式化后的结果.xlsx'  # 转换后的数据将保存到这个文件中
df = pd.read_excel(input_file, header=None)  # 假设数据在第一个工作表,且没有列标题

# 定义一个函数来解析和格式化日期
def format_date(date_str):
    # 尝试多种可能的日期格式来解析字符串
    formats = ['%Y%m%d', '%Y.%m.%d', '%Y/%m/%d', '%Y-%m', '%Y/%m/%d','%Y.%m','%Y-%m-%d']
    for fmt in formats:
        try:
            # 解析日期字符串
            date = datetime.strptime(date_str, fmt)
            # 格式化为YYYY-MM-dd
            return date.strftime('%Y-%m-%d')
        except ValueError:
            pass  # 如果当前格式不匹配,则尝试下一个格式
    return None  # 如果所有格式都不匹配,则返回None

# 应用函数到数据列的每一个元素
df[0] = df[0].apply(format_date)

# 将结果输出到一个新的Excel工作表中
df.to_excel(output_file,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉拌糖醋鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值