人工智能
文章平均质量分 96
周一同学Zelina
00后 | 互联网大厂AIGC研发 | all in AI | Prompt玩家
链接我:mondaylab712
展开
-
基于 Langchain 和 Langchain-serve 的智能文档问答系统
首先来谈下这个项目的背景。JINA AI作为开源软件的公司,维护了很多开源项目。那在此过程中,每天都会收到来自开源社区的大量问题,这间接导致工程师们每天要花很多时间去回答用户的问题。因此,基于此背景下,也就有了现在这个智能文档问答系统。首先先简单看下整个问答系统的定义。整个输入包含:用户的问题,还有完整的文档集合。而输出就是,问题的答案。原创 2024-10-30 10:01:02 · 735 阅读 · 0 评论 -
基于GPT的智能客服落地实践
AutoGPT的原理是基于预训练语言模型,使用大量的语料库进行训练,从而学习到自然语言的规律和特征,进而生成符合语法和语义规则的文章。AutoGPT是GPT的改进版,通过自动搜索算法来优化GPT的超参数,从而提高其在各种任务上的表现。AutoGPT使用多层的自注意力机制和前馈神经网络,可以有效地处理长文本序列,从而提高生成文章的质量和准确性。在生成文章时,AutoGPT会根据输入的文本内容,通过预训练模型进行编码,然后使用解码器生成符合语法和语义规则的文章。迭代过程中的一些心得和思考。原创 2024-10-23 13:44:58 · 1327 阅读 · 0 评论 -
如何基于 RLHF 来优化 ChatGPT 类型的大语言模型
从GPT1到GPT3,全世界几乎很多与ai相关的工作都是在follow openai的。到后面呢,openai其实就不再开源了,很多东西也就都没有放出来了。到2022年的时候,就出现了ChatGPT,然后就引爆了现在大模型的风潮。从CodeX开始,验证的是语言模型coding的能力,以及推演的能力。而在WebGPT里面,其实就已经在尝试决策上面的能力,它某种意义上是为后续的plugin做前置的验证。ChatGPT数据收集PretrainSFT和RLHF。四个过程都要经历哪些事情呢?以下是openai。原创 2024-10-08 16:26:00 · 956 阅读 · 0 评论 -
细说机器学习和深度学习
神经网络,也称人工神经网络。人工神经网络是一种运算模型(就是输入输出的映射),由大量的节点(或称神经元)之间相互联接构成。运算模型指的是:从输入到输出的一种映射。每个神经元里存储着若干权重(weight)、偏置(bias)和一个激活函数(activation)。输入乘上权重加上偏置,经过激活函数得到输出。激活函数用于添加一些非线性变换。神经网络通常包含一个输入层、若干隐藏层、一个输出层。输入层通常不用于计算神经网络的层数。原创 2024-10-08 16:22:21 · 1162 阅读 · 0 评论 -
一文了解ChatGPT的发展浪潮
在上面的文章中,我们了解了关于人工智能的前世今生,同时也了解了关于ChatGPT在发展过程中的一些关键节点。以上就是本文的全部内容,我们下期见~🍻。原创 2024-09-27 18:24:53 · 1266 阅读 · 0 评论 -
解密Google Cloud 全新 PaLM2及创新应用
下面先来说说,我们在用大语言模型可以干些什么。最后,我们来说下提示词从哪里开始呢?分成五步:如何开始呢?—— 比如说,拿到,基于PaLm2的这个模型,我们就先一点点地去设计这个提示词。精确—— 可以让它去按照一个角色,通过一系列的训练,去给出输出。一次问一个任务—— 同时,还要让模型尽量少地执行任务,一次性不要问太多,这样能得到更准确的答案。避免冗长—— 避免有过于冗长的提示词,包裹提示词的允许也是会有影响的。分解成简单任务—— 因此,我们可以去实试验不用的组合,找到合理的提示词。原创 2024-03-24 15:50:44 · 854 阅读 · 0 评论