Ed. Liu
码龄6年
关注
提问 私信
  • 博客:7,657
    7,657
    总访问量
  • 5
    原创
  • 2,191,734
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-03-20
博客简介:

weixin_44808865的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得4次评论
  • 获得42次收藏
创作历程
  • 5篇
    2021年
成就勋章
TA的专栏
  • 笔记
    1篇
  • Segmentation
    1篇
  • Efficient Transformer
    2篇
  • Compression
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络pytorch图像处理
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

检测分割中的多尺度信息(Multi-scale information) 融合总结【updating…】

多尺度信息的融合是检测和分割中解决小目标和边缘精度的重要方法,广泛应用于各个检测和分割的工作当中。本文以文章为对象,梳理了不同文章用到的多尺度信息融合的方法,从而有一个比较显式的对比。...
原创
发布博客 2021.08.25 ·
2441 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

上采样方法汇总(updating...)

近期在看一些Segmentation的文章,很多用到了encoder-decoder的结构,encoder基本都是各类的CNN很熟悉了,decoder涉及到上采样或者反卷积的各种方法,这里直接做一个总结。网上很多的总结都是按照方法总结,但总感觉缺点儿上下文,因此本文以论文为梳理对象,总结一下不同论文里用到的上采样方法。当然,论文的梳理不只包括Segmentation的文章,后面遇到涉及到上采样的文章也会总结到这里。1. Semantic Segmentation1.1 Fully Convoluti
原创
发布博客 2021.08.25 ·
983 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

「ArXiv2020」【Efficient Transformers: A Survey】论文笔记(更新中)

「ArXiv2020」【Efficient Transformers: A Survey】论文笔记Abstract1. Introduction2. Background on Transformers2.1 Multi-Head Self-AttentionOn the scalability of Self-Attention2.2 Position-wise Feed-forward Layers2.3 Putting it all together2.4 Transformer Mode3. A S
原创
发布博客 2021.08.08 ·
1658 阅读 ·
0 点赞 ·
1 评论 ·
8 收藏

「AAAI2021」【Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecast】论文笔记

「AAAI2021_Best_Paper」【Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecast】论文笔记Abstract1. Introduction2. Preliminary3. Methodology4. Experiment5. ConclusionPaper:https://arxiv.org/abs/2012.07436v2Code:https://github.com/zhouhaoyi
原创
发布博客 2021.03.05 ·
1700 阅读 ·
2 点赞 ·
2 评论 ·
19 收藏

「ICLR2021_rejected」【RETHINKING THE PRUNING CRITERIA FOR CONVOLUTIONAL NEURAL NETWORK】论文笔记

「ICLR2021_rejected」【RETHINKING THE PRUNING CRITERIA FOR CONVOLUTIONAL NEURAL NETWORK】论文笔记Abstract1. Introduction2. Weight Distribution-Assumption2.1 Statistical Test3. SimilarityEmpirical AnalysisTheoretical Analysis4. Applicability5. Discussion5.1 WHY CWD
原创
发布博客 2021.02.05 ·
875 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏