参考:https://blog.csdn.net/Likianta/article/details/90123678
https://www.cnblogs.com/xinghun85/p/9937741.html
谢谢博主大大!
1."普通函数", 现在我们用 async 把它们升级为 "异步函数".
一、首先要知道什么是协程、异步。
举个例子:假设有1个洗衣房,里面有10台洗衣机,有一个洗衣工在负责这10台洗衣机。那么洗衣房就相当于1个进程,洗衣工就相当1个线程。如果有10个洗衣工,就相当于10个线程,1个进程是可以开多线程的。这就是多线程!
那么协程呢?先不急。大家都知道,洗衣机洗衣服是需要等待时间的,如果10个洗衣工,1人负责1台洗衣机,这样效率肯定会提高,但是不觉得浪费资源吗?明明1 个人能做的事,却要10个人来做。只是把衣服放进去,打开开关,就没事做了,等衣服洗好再拿出来就可以了。就算很多人来洗衣服,1个人也足以应付了,开好第一台洗衣机,在等待的时候去开第二台洗衣机,再开第三台,……直到有衣服洗好了,就回来把衣服取出来,接着再取另一台的(哪台洗好先就取哪台,所以协程是无序的)。这就是计算机的协程!洗衣机就是执行的方法。
当你程序中方法需要等待时间的话,就可以用协程,效率高,消耗资源少。
注: 一个异步的函数, 有个更标准的称呼, 我们叫它 "协程" (coroutine).
-
- 第一个问题是, await 后面必须跟一个 awaitable 类型或者具有 await 属性的
对象. 这个 awaitable, 并不是我们认为 sleep() 是 awaitable 就可以 await 了,
常见的 awaitable 对象应该是:
await asyncio.sleep(3) # asyncio 库的 sleep() 机制与 time.sleep() 不
# 同, 前者是 "假性睡眠", 后者是会导致线程阻塞的 "真性睡眠"
await an_async_function() # 一个异步的函数, 也是可等待的对象
- 第一个问题是, await 后面必须跟一个 awaitable 类型或者具有 await 属性的
def demo4():
"""
这是最终我们想要的实现.
"""
import asyncio # 引入 asyncio 库
async def washing1():
await asyncio.sleep(3) # 使用 asyncio.sleep(), 它返回的是一个可等待的对象
print('washer1 finished')
async def washing2():
await asyncio.sleep(2)
print('washer2 finished')
async def washing3():
await asyncio.sleep(5)
print('washer3 finished')
"""
事件循环机制分为以下几步骤:
1. 创建一个事件循环
2. 将异步函数加入事件队列
3. 执行事件队列, 直到最晚的一个事件被处理完毕后结束
4. 最后建议用 close() 方法关闭事件循环, 以彻底清理 loop 对象防止误用
"""
# 1. 创建一个事件循环
loop = asyncio.get_event_loop()
# 2. 将异步函数加入事件队列
tasks = [
washing1(),
washing2(),
washing3(),
]
# 3. 执行事件队列, 直到最晚的一个事件被处理完毕后结束
loop.run_until_complete(asyncio.wait(tasks))
"""
PS: 如果不满意想要 "多洗几遍", 可以多写几句:
loop.run_until_complete(asyncio.wait(tasks))
loop.run_until_complete(asyncio.wait(tasks))
loop.run_until_complete(asyncio.wait(tasks))
...
"""
# 4. 如果不再使用 loop, 建议养成良好关闭的习惯
# (有点类似于文件读写结束时的 close() 操作)
loop.close()
"""
最终的打印效果:
washer2 finished
washer1 finished
washer3 finished
elapsed time = 5.126561641693115
(毕竟切换线程也要有点耗时的)
说句题外话, 我看有的博主的加入事件队列是这样写的:
tasks = [
loop.create_task(washing1()),
loop.create_task(washing2()),
loop.create_task(washing3()),
]
运行的效果是一样的, 暂不清楚为什么他们这样做.
"""
if __name__ == '__main__':
# 为验证是否真的缩短了时间, 我们计个时
start = time()
# demo1() # 需花费10秒
# demo2() # 会报错: RuntimeWarning: coroutine ... was never awaited
# demo3() # 会报错: RuntimeWarning: coroutine ... was never awaited
demo4() # 需花费5秒多一点点
end = time()
print('elapsed time = ' + str(end - start))