基于用户行为分析的推荐算法

基于用户行为分析的推荐算法

这种算法称为协同过滤算法,协同过滤是指用户可以齐心协力,通过不断的和网站互动,使自己的推荐列表能够过滤掉自己不感兴趣的物品,从而越来越满足自己的需求。

用户行为数据简介

用户行为数据最简单的存在形式是日志。很多互联网业务会把原始日志按照用户行为汇总成为会话日志(session log),其中每个会话代表一次用户行为和对应的服务,如展示日志,点击日志。

用户行为在个性化推荐系统中一般分为显性反馈行为(explicit feedback)和隐性反馈行为(implicit feedback)。explicit feedback包括用户明确表示对物品的喜好的行为。implicit feedback 是指那些不能明确反应用户喜好的行为。与explicit feedback相比,隐性反馈虽然不明确,但是数量庞大。

显性反馈数据 隐性反馈数据
用户兴趣 明确 不明确
数量 很少 庞大
存储 数据库 分布式文件系统
实时读取 实时 有延迟
正负反馈 都有 只有正反馈

用户行为分析

在利用用户行为数据设计推荐算法之前,首先需要对用户行为数据进行分析,了解数据中蕴含的一般规律,这样才能对算法的设计起到指导作用。以下用户行为数据的普遍规律。

用户活跃度和物品流行度的分布

互联网上很多数据分布都满足power Law也称长尾分布。

f ( x ) = α x k f(x)=\alpha x^k f(x)=αxk
研究发现,用户行为数据也满足power law分布, f i ( k ) f_i (k) fi(k)为被k个用户产生行为的物品数, f u ( k ) f_u(k) fu(k)为对k个物品产生行为的用户数。即
f i ( k ) = α i k i β f_i(k)=\alpha_i k^\beta_i fi(k)=αikiβ f u ( k ) = α u k u β f_u(k)=\alpha_u k^\beta_u f

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值